
 ERCIM Workshop on Dependable Software Intensive Embedded systems 
In cooperation with EUROMICRO 2005 

Porto, Portrugal 
 

23. August 2005 
 
 

From message queue to ready queue 
Case study of a small, dependable synchronous blocking channels API 

“Ship & forget rather than send & forget”  
 
 

Øyvind Teig 
Autronica Fire and Security, Trondheim (A UTC Fire and Security company) 

http:\\home.no.net\oyvteig 
 

 
Abstract 

 
This case study shows CSP style synchronous inter-

process communication on top of a run-time system 
supporting SDL asynchronous messaging, in an  em-
bedded system. Unidirectional, blocking channels are 
supplied. Benefits are no runtime system message 
buffer overflow and "access control" from inside of a 
process of client processes in need of service. A pattern 
to avoid deadlocks is provided with an added  
asynchronous data-less channel. Even if still present 
here, the message buffer is obsoleted, and a ready 
queue only could be asked for. An architecture built 
this way may be formally verified with the CSP process 
algebra.  
 
1. Introduction 
 

This "industrial" paper assumes that asynchronous 
interprocess communication is known by the reader. It 
describes a case study where the "opposite" – 
synchronous interprocess communication – was a 
viable solution, even for a small embedded system.  A 
reader should hopefully be triggered to investigate 
further, as this short six page format implies. 

The starting point for this now "work done" case 
was an in-house process/task non-preemptive run-time 
system written in C, compiled for an Atmel AVR 
processor, which contained 128 KB FLASH for 
program code and 32 KB external RAM.  Several 
products built on this architecture had been 
successfully shipped. Messages were always asynchro-
nous, meaning that any sender process would "send & 
forget" and go on.  

But there were aspects where that design could be 
enhanced, like 1.) the system message buffer could in 
theory overflow, 2.) pointer movement between proces-

ses (and possible race conditions) is difficult to handle 
and 3.) incoming messages could arrive in a process 
unprotected: regardless of its internal state. 

However, we did close these cases by careful design 
and field trials. 

Still, in another product, we decided to build a  layer 
of synchronous, blocking and unidirectional channels 
on top of the asynchronous system. Having also 
shipped a product with this paradigm and implemen-
tation, with no new software release after a year's use 
(also thanks to stable functional requirements), we 
decided to continue and use it in a second product. 

The concern here had initially been to select a 
dependable software pattern to avoid deadlocks. 
Interestingly, the selected pattern includes data-less 
asynchronous signal channels (later). 
 
2. SDL and CSP 

 
The two "competing" paradigms here are SDL ("the 

asynchronous")  and CSP ("the synchronous" in this 
context). The edit-by-anyone Wikipedia dictionary [1] 
(also pointing to more academic sources) has entries of 
both: 

SDL: "SDL (short for Specification and Description 
Language) is a specification language targeted at the 
unambiguous specification and description of the 
behaviour of reactive and distributed systems. It is 
defined by the ITU-T (Recommendation Z.100.) 
Originally focused on telecommunication systems, its 
current areas of application include process control and 
real-time applications in general." 

CSP [2]: "'Communicating Sequential Processes' 
which was published in 1985. In May 2003, that book 
was the third-most cited computer science reference of 
all time according to Citeseer (albeit a very unreliable 
source due to the nature of it sampling). … As its name 



 

 

suggests, CSP allows us to describe systems as a 
number of components (processes), which operate in-
dependently and communicate with each other solely 
over well-defined channels. CSP introduces a process 
algebra which is used to describe a process' communic-
ations with its environment."  

Some languages influenced by CSP are occam [3] 
and Ada [4]. 

Synchronous systems may be built with asynchro-
nous components, by adding some kind of handshake 
(like, waiting for a reply or building mechanisms into 
the run-time system). Likewise, asynchronous systems 
may be built with synchronous components, by adding 
some kind of overflow handling (like, overflow buffer 
processes.) 

Most embedded system would probably need to use 
both paradigms. If we build with solely synchronous 
primitives, no input should allow the software or 
system to malfunction (therefore, have control on input, 
so that loosing data is a conscious action). If we build 
solely on asynchronous primitives, no interprocess 
communication should be allowed to crash the system 
(therefore, have control on it and introduce some kind 
of handshake or synchronism).  
 
3. Blocking 
 

When a process waits for a reply or access to other 
processes (below), it blocks "on the synchronous chan-
nel". Think of blocking as equal to what a calling func-
tion does when it waits for a called subroutine to re-
turn. There is no other thing to do than "wait".  

Opposite, an asynchronous sending will not block. 
Starting new processes from within a process may 

have "blocking fork/join sematics", depending on the 
operating system (occam blocks). In our system proces-
ses are only spawned from "main", before the scheduler 
is entered (the spawning in itself will not block, so that 
more than one process may be started).  

With blocking semantics, parallel slackness be-
comes an issue – that we have enough processes to get 
things done, with a goal to handle all necessary I/O 
activity. Total work done should not be less. 

Observe that passive waiting is indeed used when 
"delay" is wanted.  

 
4. Access control of other processes 
 

With blocking semantics, we will also be able to 
have others hang while waiting for this process. This 
could be busy processing or busy with another session. 
Then, in due course, we would open access to this from 
others, and process their messages, one in turn.  

A side effect of this is that we may choose whom 
we want to serve, so that the server (this) could serve 
the clients (them) in a fair manner – or in the manner it 
chooses. 

The term most often used for this is selective 
waiting. Both occam and Ada (and UML 2.0 [5]) have 
structures for it, and we have implemented it in the 
channel layer. It is called ALT for ALTernative. 

Another facet is that processes built with this 
scheme certainly need to obey the protocol semantics 
in interchange with other processes, but they do not 
need to know the semantics of the other processes' 
internal behaviour. As some times with asynchronous 
systems, when, and perhaps even if a message is put in 
a common message queue, need not be known. Not 
needing to know another party's semantics has been 
referred to as WYSIWYG semantics [6]. This also 
makes processes become dependable software compo-
nents. It also shows the compositional semantics of 
CSP. 

Observe that this is not the same as the monitor  
mechanism implemented in Java, where some sort of 
queuing of the blocking threads is done. However, one 
can build channels with monitors as building blocks in 
Java, .NET and Posix [7]. At least one major operating 
system bases interprocess communication on synchro-
nous, blocking, rendezvous (later) type communication 
from bottom and up, and the vendor argue strongly 
about the safety perspective of this solution [8]. 
 
5. The layered architecture 
 

 
 



 

 

The channel abstraction API resides on top of the 
SDL run-time system. Only one SDL function is not 
abstracted, the _FSM_Init_, which initialises a process. 
"SDL processes" may coexist with "CSP processes", 
but any communication between the two worlds would 
have to be done as asynchronous messages, with 
channels not used by the CSP process in charge during 
such a session. 

 
6. The channels C API abstraction 
 

All C code use of this API is by macros. A channel 
is a global data structure containing id of the first 
process, one half of the memcpy parameters, and states 
in the channel. For debug purposes we optionally insert 
intended sender and receiver identification.  
 

 
 

There are channel initialisation, inputs (for use in 
ALT constructs and not) and outputs (outputs do not 
know whether they are part of any ALT). An input may 
also have a timeout attached. And the local communic-
ating state machines (processes) may need to want 
themselves to be rescheduled in some cases. 

All these macros define state changes that are 
visible from the outside of a process. 

 
7. Semantics of asynchronous messages 
 

A message is sent (memcpy'ed) into a message 
queue of individual elements, all with the size of the 
largest element. Proc A and B may proceed to send 
other messages immediately, before they are 
descheduled, i.e. they do not block. A receiver must 
handle the incoming message queue (and memcpy the 
data again if it wants to keep it) on a first come first 

serve basis. Should any of the messages not confirm 
with some process inner state, it is discarded or set 
aside for later processing. The process becomes 
another scheduler above the run-time scheduler. If one 
needs to send larger chunks of data than one could 
afford to put into the message queue, a pointer to the 
message is sent instead. This requires access 
mechanisms to be built into the data segment, and some 
kind of feedback to the sender to inform that data has 
been read and is free (i.e. some synchronisation 
mechanism). In effect, one invents part of the channel 
concept anew every time. Also, with asynchronous 
messages, a (fast) producer and a (slow) consumer may 
be out of phase, and there is no mechanism to avoid 
queue overflow (..than to insert synchronousity). In 
most systems an overflowed interprocess message 
queue is detected by the run-time system, which then 
often have no other way out than to restart the system. 

 

 
 

 8. Semantics of synchronous channels 
 

 
 



 

 

A channel is a named entity. You send or receive 
“on a channel”, not with a named process. It acts as a 
handle to a "protected" region of the code (or rather to 
a state-controlled protected phase), where the two inter-
acting processes meet and do a memcpy from sender's 
internal to receiver's internal data structures. The 
memcpy is invisible in process code. In our case the 
channel is one-way. This meeting and memcpy'ing 
phase is often called a rendezvous, an Ada term. The 
part arriving first (sender or receiver) blocks and is 
descheduled until the second part (receiver or sender) 
arrives. Then memcpy and continuation of last part, 
and rescheduling of first. 

Observe that an input timeout or simply a wait (for 
polling) is implemented as a channel with a timer on 
the sender side. The run-time system inserts the re-
scheduling message when a timer has timed out. It also 
hinders timeouts to enter a process incorrectly if the 
optional channel(s) attached have already been taken. 

Observe that we have not implemented timeout on 
sending. To implement this on on-chip interprocess 
communication with non-preemptive scheduling would 
have been straighforward, had we seen any need for it. 

The asynchronous channel implemented here does 
not cause the message buffer to overflow if one rule is 
obeyed: That no new asynchronous signal is sent 
before contact with the receiver has been achieved. 

 
9. “From message queue to ready queue” 
 

This paper’s title implies that the message queue is 
now not used for anything else than for sending dummy 
signals to a process, with the only purpose of 
scheduling it. So, we could have dropped the message 
queue for a process ready queue. But the asynchronous 
run-time system is well tested and we wanted to keep it.  

Such a ready queue would also need to contain the 
cause of the rescheduling. The place this is needed is in 
an ALT, where we must know which clause that caused 
the rescheduling (i.e. channel number or timeout). 

 
10. Deadlock avoidance 
 

Where two processes spontaneously need to send 
data to each other, a blocking communication scheme 
might cause deadlock. This is a state where processes 
try to communicate – in a circular pattern – blocking 
for each other to become ready, and therefore unable to 
proceed. This is pathological and must not happen. All 
processes run at the same priority, so any priority 
inversion problem is ruled out in the system. 

 

 
 
The pattern we chose to avoid this was to give the 

processes clear roles: slave and master. Master may 
send on the blocking channel any time (solid arrows) 
when it has something. Slave would never block on any 
spontaneous message, since the asynchronous “poll 
me” message (stippled arrow) lets the slave go on and 
not block, and then instead hang in an INPUT or ALT 
on the input channel. When the “OK, come on” 
message arrives from the master, the agreed upon 
protocol assures no deadly embrace. 
 
11. Coding examples 

 
(The text folds starting with “... “ in the code 

excerpt here contain code, or other folds.) 
 

 
 

All process data is kept in a local "Context" in each 
process. It is allocated on the heap in the initialising 
phase. The scheduler schedules a process when it calls 
it. A process keeps track of its own state and does a 
switch/case on this state. It must run to completion on 
every scheduling, since there is non-preemptive 
scheduling. Therefore a process function return goes 
back to the scheduler.  

This gives the nice side effect of one common stack 
for all processes.  

Asynchronous i/o is pulled in/out by interrupts that 
use queues, which are polled by driver type processes. 

 



 

 

 
 
Above, is an example of an input ALT construct, 

where we see two channels with a timeout. A compo-
nent of the ALT will be skipped if its “Guard_” 
becomes FALSE. This is the way to control client's 
access. 

Not shown is the hand-coded test to verify that all 
guards are not FALSE (equal to the occam STOP, 
where a process cannot proceed). If so, it is a program-
ming or design error, suited to "crash" – for further 
investigation and required program update. 

Observe that there is no busy waiting by the process 
to facilitate waiting on a channel. This is  because the 
second contender "pulls" the rescheduling of the first. 
This is the usual monitor & condition variable solution 
(also [7]). 
 
12. Formal basis of the architecture 
 

CSP, on which this scheme is based, has not been 
much discussed here, but it is possible to model and 
verify any system with this process algebra [9]. This 
would be out of reach (expensive), and not very 
interesting for us (small system and use of known 
software patterns). (Admittedly, this author knows CSP 
through occam and has had no hands-on experience 
with it.) However, other process algebras, like FSP, 
analysed with the free LTSA tool, may also be used 
[10] (it has been tried). Modelling asynchronous 
systems (albeit with finite size buffers, which makes 
them synchronous when buffers are empty/full) is also 
possible with Promela and the free SPIN tool [11]. 

The channel layer API discussed here was modelled 
on macros used by the code generator of the SPoC 
occam-to-C compiler [12]. SPoC also was a non-pre-
emptive run to completion system, with appropriate 
scheduling queues and a timer queue (but no message 
queue). All the communication states and process start 
& stop that we would have to code by hand in the 
project was done automatically by SPoC, since occam 
supports channel input, output, ALT, input timeout and 
wait, as well as compositional prioritised processes. 
 

13. Discussion 
 

The system adds approximately 2 KB of program 
memory. Execution time overhead (as compared to the 
asynchronous system) depends on whether the asyn-
chronous system uses any synchronization to make it 
"safe" (this would make the systems about equal), and 
how the asynchronous system uses the received data. If 
it needs to keep the data past next descheduling, the 
asynchronous system needs two memcpy's.  

Setting up a communication or an ALT obviosuly 
takes more cycles than just returning from the process, 
which is the asynchronous behaviour. But these cycles 
are only a small percentage of burnt cycles in our 
processes anyhow, so the overhead has been insignific-
ant for our applications.  

We would not have used this system had we had, 
say,  8 KB of code space (the SDL runtime system is 
about 20 KB, and we need that anyhow). But with 128 
KB of code space (or, soon 256 KB – nice for an 8 bit 
machine) and 16 MHz clock, the added well-being of 
knowing that the system never overflows the message 
queue or sends unwanted messages into a processes, 
outweighs the overhead.  

Using this methodology (with occam, SPoC and a C 
CSP library) has proven valuable for about 15 years, 
where (provided functional requirements are stable), 
"ship & forget" was more the rule than the exception.  
This was in embedded systems (then with Transputers 
and later DSPs and Intel 386ex machines) and on host 
Windows machines. 

When the communication states have been set up, 
using them is straightforward: fill local structs in the 
context and set a state variable to send, or just set a 
state variable to input or wait.  

But, there is more complexity to this system than I 
like to admit, also when it comes to personal engineers’ 
preferences and background. If OO has had its way, the 
CSP kind of thinking certainly also has [13]. 

Grasping the communicating state machines, which 
are not in the application domain, but constitute the 
skeleton of the process/data-flow architecture, is 
individual. A channel most probably seems as belong-
ing to OSI network (3) or transport (4) layer, and 
certainly not the application layer (7). Some program-
mers learn this methodology easily; let them handle it. 
Some resist or do not bother about these technicalities, 
let them concentrate on the product proper and 
application communication layer. The infrastructure 
person(s) should then set up the necessary construct for 
the application people to just use.  



 

 

However, when the communication infrastructure 
code once has been set up, it tends to stay stable and 
work. 

Setting the size of the present ready queue is a 
matter of finding the maximum scheduling incidence 
volume. When this is found, even the producer-con-
sumer problem will not cause further queue usage. To 
find this value we let the scheduler catch any overflow 
and then increase, with a margin. This is the same 
procedure as with a pure asynchronous system. How-
ever, when maximum has been found, there is no room 
for further surpises, since the value is a function of the 
number of channels and processes, not the communic-
ation pattern. 

A future dream is to have (a subset of?) Ada avail-
able for microcontrollers of this type, or Java (where 
CSP libraries [14][15] are available). Or hope that 
result of ongoing occam research will hit industry some 
day [16]. In the meantime, we could use solutions as 
the one discussed here, which really is quite depend-
able, even if it is based on hand-written C. 
 
14. References 
 
Ref. [17] has been added since it is a good starting 
point for both theory and practice of this field of com-
puter science. Use this list as hands-on and academic 
starting points, not especially for direct referencing of 
origins. 
 
[1] Wikipedia at http://en.wikipedia.org/wiki/ 
SDL at #Specification_and_Design_Language 
CSP at #Communicating_sequential_processes 
 
[2] C.A.R. Hoare, Communicating Sequential Processes, 
Prentice Hall, 1985 
 
[3] Wikipedia [1] at #occam_programming_language 
 
[4] Wikipedia [1] at #Ada_programming_language 
 
[5] J. Rumbaugh, I. Jacobson and G. Booch, The Unified 
Modeling Language Reference Manual, 2.ed., Addison 
Wesley, 2004 
 

[6] P.H. Welch, University of Kent at Canterbury, UK in 
mail list, at http://www.wotug.org/lists/occam/1142.txt 
 
[7] P.B. Hansen and C.A.R. Hoare, monitors, see 
Wikipedia [1] at #Monitor_%28synchronization%29 
 
[8] Integrity from Green Hills Software Inc. 
 
[9] The tool FDR2 by Formal Systems 
 
[10] J. Magee and J. Kramer, Concurrency, State models and 
Java programs, Wiley, 1999. 
Free tool at http://www-dse.doc.ic.ac.uk/concurrency/  
 
[11] G.J. Holzmann, The Spin Model Checker, Primer and 
reference manual, Addison-Wesley, 2003 
Free tool at http://spinroot.com/spin/whatispin.html 
 
[12] M. Debbage, M. Hill, S. Wykes, D. Nicole, 
Southampton's Portable Occam Compiler (SPOC", In: 
Miles, Chalmers (ed.), "Progress in Transputer and occam 
Research", IOS Press, Amsterdam, 1994 (WoTUG 17 
proceedings), pp. 40-55. 
Free tool at: http://gales.ecs.soton.ac.uk/software/spoc/  
 
[13] Ø. Teig, CSP: arriving at the CHANnel island - 
Industrial practitioner's diary: In search of a new fairway, in 
"Communicating Process Architectures", P.H. Welch and 
A.W.P. Bakkers (Eds.), IOS Press, NL, 2000, Pages 251-
262, at http://home.no.net/oyvteig/pub  
 
[14] P.H. Welch and P.D.Austin. Communicating Sequential 
Processes for Java (JCSP), 1999- 
At http://www.cs.kent.ac.uk/projects/ofa/jcsp/  
 
[15] Communicating Threads for Java (CTJ), 
G. Hilderink, J. Broenink, W. Vervoort, A. Bakkers 
Communicating Java Threads, in the Proceedings of the 20th 
World Occam and Transputer User Group Technical 
Meeting, pp. 48-76, ISBN 90 5199 336 6, IOS Press, The 
Netherlands. At http://www.ce.utwente.nl/javapp/ 
  
[16] P.H.Welch, F.R.M. Barnes (University of Kent at 
Canterbury), occam-pi: blending the best of CSP and the pi-
calculus,  
at http://www.cs.kent.ac.uk/projects/ofa/kroc/   
 
[17] WoTUG home page: http://www.wotug.org/  

 


