
CSP: arriving at the channel islandFrom hard microseconds to speedy years. Real time in the industryThinking about it: Channels more than connect threads. They protect them

Thinking about it: Channels more than connect threads. They protect them

CSP: arriving at the channel island

CHANNELING AGAINST THE FLOW

From hard microseconds to speedy years. Real time in the industry

CSP: arriving at the channel islandFrom hard microseconds to speedy years. Real time in the industryThinking about it: Channels more than connect threads. They protect them

Thinking about it: Channels more than connect threads. They protect them

CSP: arriving at the channel island

CHANNELING AGAINST THE FLOW

From hard microseconds to speedy years. Real time in the industry

The full, annotated figure from  
«Verden omkring oss», 1955 ("Odhams Encyclopedia for Children»)
shown later in this lecture

Autronica @ embedded systems
Blogging about concurrency etc.

(1976-2017)
(1975)

(now)

Ver. 1.0 of 7May2019

INVITED SPEAKER, 7. MAY. 2019 AT
NTNU, TTK4145 SANNTIDSPROGRAMMERING (REAL-TIME PROGRAMMING)

‣ Lecture by Øyvind Teig, siv.ing. NTH

Student soldering and box layout at
D-blokka, endelabben.

Analog computer of circulatory system
 («Jenny» by Aaslid) plus ultra-sound

(«PEDOF» by Angelsen) and at
Rikshospitalet, summer 73

(1971..)

AS SAID, PREVIOUS LECTURES WERE DIFFERENT FROM THIS
www.teigfam.net/oyvind/pub/pub.html

http://www.teigfam.net/oyvind/pub/pub.html

THIS LECTURE

GOAL
▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

▸ A little about myself..

▸ ..and my experience from more than 40 years in the industry

▸ (btw: This lecture is on my home page (ref. at the end))

▸ ..plus some MATTERS #1-4 SINCE LAST YEARTo be honest: to
 tell y

ou as much as possible of w
hat I k

now about concurrency and things

ARDUINO IDE BASICS

▸ «Sketch» is a «project»

▸ Top level: .ino-files (not main.c)

▸ First for Atmel AVR processors

▸ I have played with Arduino SAMD Boards
(32-bits ARM Cortex-M0+)

ARDUINO IDE

Startin
g

at th
e st

art

ARDUINO IDE
https://www.arduino.cc/en/Tutorial/BareMinimum

BARE MINIMUM CODE NEEDEDBARE STANDARD CODE NEEDED

https://www.arduino.cc/en/Tutorial/BareMinimum

ARDUINO IDE
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 init();	
	 initVariant();	
#if	defined(USBCON)	
	 USBDevice.attach();	
#endif

	 	 loop();	
	 	 if	(serialEventRun)	serialEventRun();

BARE MINIMUM CODE CALLEDBARE STANDARD CODE CALLED

https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

▸ «As the others have stated, no you can't have multiple loop
functions»

▸ «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

▸ = Concurrency

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

ARDUINO IDE

?

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

▸ I once saw a system like this, it took a person a year to fix the mess!

▸ The problems were races between interrupts and «main»

▸ How to send results away?

▸ It’s a start, it works here, but it’s not a general problem to design a scheduler
by

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

▸ However

▸ As I see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

▸ Beware of «toy» schedulers!

▸ But Arduino is not a toy as such!

ARDUINO IDE

ARDUINO «void loop» ON MY DESK

?
?

RADIO MODULE
434.0 MHZFro

m a blog note

INSTEAD 433.706 MHZ
Car key

ARDUINO «void loop»

XMOS 8-CORE
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrencyConcurrency
NEXT: SchedulerMORE LATER

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

// Task no.2: blink LED with 0.1 second delay.
void loop2() {
 digitalWrite(led2, HIGH);
 delay(100);
 digitalWrite(led2, LOW);
 delay(100);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
 digitalWrite(led1, HIGH);

 // IMPORTANT:
 // When multiple tasks are running 'delay' passes control
 // to other tasks while waiting and guarantees they get
 // executed.
 delay(1000);

 digitalWrite(led1, LOW);
 delay(1000);
}

// Task no.3: accept commands from Serial port
// '0' turns off LED
// '1' turns on LED
void loop3() {
 if (Serial.available()) {
 char c = Serial.read();
 if (c=='0') {
 digitalWrite(led3, LOW);
 Serial.println("Led turned off!");
 }
 if (c=='1') {
 digitalWrite(led3, HIGH);
 Serial.println("Led turned on!");
 }
 }

 // IMPORTANT:
 // We must call 'yield' at a regular basis to pass
 // control to other tasks.
 yield();
}

https://www.arduino.cc/en/Tutorial/MultipleBlinks

https://www.arduino.cc/en/Reference/Scheduler

▸ This is all too usual: concurrency is really not their business: no multi-threading here!
▸ We often have to use libraries, perhaps even if
▸ <threads.h> is an option for C11/C18 compilers
▸ and that it supports atomic

▸ Often home built schedulers
▸ Often with a steep learning curve.

▸ Repeating somehow
▸ Solutions would use critical sections (often as disable/enable of interrupt?),

semaphores, locks and mutexes only
▸ We need time handling, waiting for a set of higher level events with an optional

timeout
▸ We do not appreciate busy polling
▸ etc..

I would know

▸ Assembler (1975-1980)

▸ PL/M (1980-1990)

▸ Modula-2 (1988-1990)

▸ MPP-Pascal (1982-1988)

▸ occam (1990-2001)

▸ C (2002-2017-(present))

▸ [Java (1997-2000)]

▸ [Perl (2002)]

▸ XC (privately 2012-present)

LANGUAGES (THAT I HAVE USED)

XC Reference Manual

(VERSION 8.7)

2008/07/16

Authors:

Douglas WATT
Richard OSBORNE
David MAY

Copyright © 2008, XMOS Ltd.
All Rights Reserved

XMOS Programming Guide

Document Number: XM004440A

Publication Date: 2015/9/18
XMOS © 2015, All Rights Reserved.

xTIMEcomposer User Guide

Document Number: XM009801A

Tools Version: 14.0.x

Publication Date: 2015/10/29
XMOS © 2015, All Rights Reserved.

🤓

🤓

RUNTIMES / SCHEDULERS (THAT I HAVE USED) (1/4)
▸ Runtime/scheduler is about which process models we have used
▸ Rather than all code in a big loop in main
▸ More later

▸ 1978: No runtime system, assembly only
▸ Diesel start/stop for emergency power

▸ 1979: MPP Pascal with early «process» term
▸ Protocol conversion, fluid level measurement and fire detection

▸ 1980: PL/M with NTH-developed run-time
▸ Ship’s machine room monitoring

▸ 1982: Assembler with runtime that I developed
▸ Fire detection

▸ 1988: PL/M with runtime that I developed
▸ Fire detection (here?)

▸ 1988: Modula-2 with purchased run-time and coroutines
▸ Fire detection

▸ 1990: INMOS transputer with built-in scheduler in HW
programmed in occam
▸ Ship’s engine monitoring

▸ 1995: C with VxWorks os
▸ Fire detection

RUNTIMES / SCHEDULERS (THAT I HAVE USED) (2/4)

🔭

RUNTIMES / SCHEDULERS (THAT I HAVE USED) (3/4)

▸ All below used in fire detection related applications
▸ State as of June 2017
▸ 2000: FSM scheduler: Most of our controllers use an
▸ asynchronous SDL-based scheduler

▸ 2006: CHAN_CSP: However: in two of the controller there are
▸ synchronous channels on top of the FSM scheduler

▸ 2010: ChanSched: finally in one of the controllers
▸ synchronous channels on top of no other runtime («naked»)

Code
examples
compared
later

▸ 2012: XMOS XCore multi-core with built-in scheduler etc. in HW
▸ Blogging and aquarium controller box

▸ Programmed in XC
▸ Also takes C and Cpp (nice for porting)
▸ Much more later

RUNTIMES / SCHEDULERS (THAT I HAVE USED) (4/4)

Aquarium radio client (listener)

WHAT ABOUT (USER LEVEL) INTERRUPTS?

▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a
USART or TIMER) that mostly deliver data to it, are separate
silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM)
can offer

▸ However, an «interrupt thread» («task», «process») (??) does
not supply you with general «thread», «task», «process» terms

Interrupt
hw & sw

Driver
thread

ARDUINO: the three loop() architecture to the rescue?

Another m
atte

r

CONCURRENCY

WHAT ABOUT NO (USER LEVEL) INTERRUPTS?
▸ Two processors I have worked with do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel μP)
▸ there was one 'event' line treated as a channel (no data) in occam [1]

▸ The XCore multi-core architecture
▸ adds a more generalised I/O-pad architecture (edge, timer, etc.)

handled in the XC language and intrinsic macros or functions.
«Between standard processor and ASIC»

▸ I think their deterministic timing guarantee (by compiler and tool)
may give full control of interrupt latency [2]

[2] https://en.wikipedia.org/wiki/XCore_Architecture
[also see] https://en.wikipedia.org/wiki/Parallax_Propeller

[1] https://en.wikipedia.org/wiki/Transputer

https://en.wikipedia.org/wiki/XCore_Architecture
https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is(?) presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ As mentioned, I will show you some here. Has channels and interfaces
▸ Also based on CSP

[1] http://wotug.cs.unlv.edu/generate-program.php?id=1
[2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

[3] https://swtch.com/~rsc/thread/
AT NTNU?

🤓

🤓

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada
https://swtch.com/~rsc/thread/

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded programming have a reputation for
difficulty.

We believe this is due partly to complex designs such as pthreads and
partly to overemphasis on low-level details such as mutexes, condition
variables, and memory barriers.

«

 
 https://golang.org/doc/faq#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

One of the most successful models for providing high-
level linguistic support for concurrency comes from

Hoare's Communicating Sequential Processes, or CSP.

Occam and Erlang are two well known
languages that stem from CSP.

Go's concurrency primitives derive from …notion of
channels as first class objects. Pi-calculus

» 
 https://golang.org/doc/faq#csp

?

https://golang.org/doc/faq#csp

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

▸ Ada if «Ravenscar profile» (that removes rendezvous!)

▸ Go is «not real-time» they say

▸ Occam on many transputers and one transputer; 
different properties. Not really relevant any more

CONCURRENT? PARALLEL? REAL-TIME?

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

XC from my aquarium controller and xTIMEcomposer

MULTIPLE LOOPS WITH par: XC

THIS IS PARALLEL

Showing

a fo
rest

for s
ome tre

es

MATTER #1 SINCE LAST YEAR: SCRATCH

Spill-og data-
PROGRAMMERING
Spectrum forlag 2017
ISBN 978-8231611752
→
Computer Coding for Kids 
by Carol Vorderman
Dorling Kindersley
ISBN 978-1409347019

Level of synchronisation
‣ Application level?
‣ But waiting for «ack» is invisible
‣ No Go-like channel here

MATTER #2 SINCE LAST YEAR: RUST

Using Message Passing to Transfer Data Between Threads
https://doc.rust-lang.org/beta/book/ch16-02-message-passing.html

use std::thread;
use std::sync::mpsc;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

https://doc.rust-lang.org/beta/book/ch16-02-message-passing.html

MATTER #2 SINCE LAST YEAR: RUST

https://doc.rust-lang.org/std/sync/mpsc/

Disclaimer: I have not coded a line of Scratch or Rust🧐

https://doc.rust-lang.org/std/sync/mpsc/

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

▸ Concurrency TS futures are not widely implemented

[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

TS – Technical Specification

https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
https://talks.golang.org/2012/concurrency.slide#31

• All channels are evaluated
• Selection blocks until one communication can proceed, which then does
• If multiple can proceed, select chooses pseudo-randomly
• A default clause, if present, executes immediately if no channel is ready
select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Optional, introduces , needed some times

Watch
 it!

Alternati
ve receiv

es

x, ok
 = <-ch

x, ok
 := <-ch

var x, ok
 = <-ch

var x, ok
 T = <-ch

busy poll

https://talks.golang.org/2012/concurrency.slide#31

Discussing new runtime scheduler
made at NTH (1981)

Visiting Whessoe in Newton-Aycliffe (UK)
working with a 16-bits transputer (1995)

Starting with C
CSP-type

schedulers
(2002)

Autro
nica

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control
▸ Waiting ships and waiting cars are «orthogonal» (?)
▸ Some bridges are for cars, some for trains
▸ Some bridges are tall enough to let most ships through
▸ Which part of this drawing might most resemble a  

CSP type system? (Even if CSPm may model everything)

▸ The castle allows all traffic in (ok!)
▸ ok, if it’s not disturbed!

▸ Now it is protected!
▸ Doing something undisturbed in the castle

▸ I guess that this is the most important page in this lecture!

THE CASTLE AND DRAWBRIDGE

!

CHAN?

TERMINOLOGY?

«DRAWBRIDGES»

«GATES»

guards
CSP «MODEL»

A CHANNEL HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it
▸ It has «states»
▸ Channels, buffers, queues, pipes also have their semantics
▸ Simplest CSP chan: synchronous, one-way, no buffer

A CANAL LOCK HAS SEMANTICS

A B
📦

first: have result!

🏃

A: run

💃

- busy!

wait/sleep/block

📦

send > receive

💁

second: ready!

🎨

thanks! paint

👀

more to do? synchronous 
unbuffered

X

🎬

Has been  
undisturbed  
and running 
all the time! B: dance

CHANNEL SEMANTICS

chan

🚧

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

▸ But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much
▸ Buffer full when no more memory: restart!😱
▸ Therefore:

PAUSE?PAUSE?

MY USB WATCHDOG (AND RELAY OUTPUT) BOX

http://www.teigfam.net/oyvind/home/technology/187-my-usb-watchdog-and-relay-output-box/

USB
5V in

USB 5V out

I2C watchdog keep-alive
plus two 230V AC relay outputs

Two 230V AC relay outputs
Unit being monitored

(that stores number of restarts)

http://www.teigfam.net/oyvind/home/technology/187-my-usb-watchdog-and-relay-output-box/

CONT!CONT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

«Knock/come» is deadlock free
P3-P5

XCHAN is deadlock free [2]
P6-P7

No timeout between internal processes! If timeouts: mess guaranteed!

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

Fro
m a blog note

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

data
come!data, thanks!

Atomic
data, thanks!

Slave Master

Roles

data!

oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

Go:(?)
• knock!
• may be simulated with a
• make (chan int,1)
• that P3 will not re-knock!
• on before
• come!
• has been received
• Thus it will never block

Three
distinct

channels
c_1

c_3

c_2

http://oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

GUARDS

Go “simulates” a guard if a communication component is nil
Referred in http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

1 of 4

http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

XC has guards built into the language. Plus interface
https://www.xmos.com/published/xmos-programming-guide

Implemented with channels, states and/or locks by the XC compiler

As I have already shown, I use this at home:

GUARDS2 of 4

https://www.xmos.com/published/xmos-programming-guide

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

Asid
e

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.

This pattern is understood by the compiler and it is deadlock free

typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

occam, too. But it didn’t have interface
https://en.wikipedia.org/wiki/Occam_(programming_language)

 ALT

▸ Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)

▸ Any way gives the wanted effect of «protection»

 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2

GUARDS3 of 4

https://en.wikipedia.org/wiki/Occam_(programming_language)

PyCSP https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

▸ SkipGuard(action=[optional])

GUARDS4 of 4

More about «fairness»:

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices and then executes
a PriSelect on the new order of guards

▸ Go

▸ Nondeterministic (pseudo random) choice

▸ XC

▸ Nondeterministic (unspecified) choice(?). I have tested it and it seem quite fair

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

▸ But which is best? Or best suited? Or good enough?

▸ They don’t agree!

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

🙄

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript

▸ JavaScript -> .NET

▸ Real threads. Real blocking

▸ Do watch it! The best to understand what this is all about!

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

Last BS-100 for a ship (2011)
Even in display that scheduler

BS-100 fire panel (1990..)
In-house scheduler and Modula 2

AutroKeeper (2010..)
Chansched scheduler

Autro
nica

1990: OCCAM WITH PROCESS AND CHANNELS.
TO ME: NOTHING EVER THE SAME AFTER

Transparent transputer links running in LON industrial network, testing a virtual channel router in my office

SHIP’S ENGINE CONDITION MONITORING
(MIP-CALCULATOR: NK-100)

Autro
nica

1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Debugged
occam
lines in C
directly in
Microsoft
Visual C++

Autronica

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»
▸ Don’t take over their toolset without adding your knowledge
▸ Like channels and «tight» processes (that protect)
▸ Even if it will be hard to C/C++ schedulers

AutroKeeper with Atmel AVR Xmega

Advic
e

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

▸ The red blocking is blocking of others that need to proceed
according to specification (too few threads?)

▸ The black blocking is deadlock, pathological, system freeze

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

Fro
m a blog note

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state,
nesting)

▸ Channels and conditional choice (select, alt)

▸ In proper processes, concurrency solved

▸ Connecting channels to event loops and callbacks when
that’s what you have in a library (like in Closure core.async,
see Further reading)

«CHANSCHED»: CSP ON AVR XMEGA
▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)
▸ The runtime was more visible to the application code than I

thought (next page)

Part of process/data flow diagram

Autro
nica

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

} {
33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

{Equal
Sync chan comm needs states Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

SAME CODE IN A LIBRARY AND OCCAM

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

LESS READABLE WHEN PERHAPS:

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed
▸ Formal model gave us roles and protocol elements

produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

http://produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

MATTER #3 SINCE LAST YEAR: XC TASK TYPES
Unravelling XC concepts [[combine]], [[combinable]], [[distribute]],
[[distributable]] and [[distributed(..)]] plus par and on..

▸ Task source code not decorated is «normal» task

▸ Decorated with [[combinable]]

▸ = both of the above «asynchronous» interface / channel comms

▸ Decorated with [[distributable]]

▸ = «synchronous» interface / channel comms

▸ Variants: [[combine]], [[distribute]], [[distributed(..)]]

http://www.teigfam.net/oyvind/home/technology/175-cpa-2018-fringe/
http://www.teigfam.net/oyvind/home/technology/175-cpa-2018-fringe/

MATTER #3 SINCE LAST YEAR: XC TASK TYPES

From the XMOS Programming guide

void handle (server interface button_if_t i_but[3]) {
 int cnt = 0;  
 timer tmr;
 int time;
 bool timeout = false;
 tmr :> time;
 while (1) {
 select {
 case i_but[int i].but (int ms) : {
 // Do something
 timeout = false;
 break;
 }
 case tmr when timerafter(time) :> void: {
 timeout = true;
 time += XS1_TIMER_HZ; // One second
 break;
 }
 }
 cnt++;
 }
}

int main (void) {
 interface button_if_t i_but[3];
 par {
  
 par {
 handle (i_but);
 button (i_but[0]);
 button (i_but[1]);
 button (i_but[2]);
 }

 }
 return 0;
}

interface button_if_t {
 void but (int x);
}; Constraint check for tile[0]:

 Cores available: 8, used: 4 . OKAY
 Timers available: 10, used: 4 . OKAY
 Chanends available: 32, used: 6 . OKAY
 Memory available: 65536, used: 1464 . OKAY
 (Stack: 372, Code: 882, Data: 210)

01
02
03

04

05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
39
40
41
42

‣XC
‣1

typedef enum {false,true} bool;

[[combinable]] ‣2

[[combine]]

Constraint check for tile[0]:
 Cores available: 8, used: 1 . OKAY
 Timers available: 10, used: 1 . OKAY
 Chanends available: 32, used: 0 . OKAY
 Memory available: 65536, used: 1852 . OKAY
 (Stack: 404, Code: 1228, Data: 220)
Constraints checks PASSED.

‣3

[[distributable]] // [[combinable]]

‣4 Constraint check for tile[0]:
 Cores available: 8, used: 1 . OKAY
 Timers available: 10, used: 1 . OKAY
 Chanends available: 32, used: 0 . OKAY
 Memory available: 65536, used: 1756 . OKAY
 (Stack: 404, Code: 1132, Data: 220)
Constraints checks PASSED.

‣5

[[combine]]
par (int j = 0; j < 3; j++) {
 button (i_but[j]);
}
[[combine]]
par {
 handle (i_but);
}

Constraint check for tile[0]:
 Cores available: 8, used: 2 . OKAY
 Timers available: 10, used: 2 . OKAY
 Chanends available: 32, used: 4 . OKAY
 Memory available: 65536, used: 1728 . OKAY
 (Stack: 376, Code: 1090, Data: 262)
Constraints checks PASSED.

../src/main.xc:366:1: error: distributed statement must be a call  
 to a distributable function

‣6 Wrong error message[[distribute]] // [[combine]]

// int cnt = 0;

// cnt++;

// timer tmr;
// int time;
// bool timeout = false;
// tmr :> time;

// case tmr when timerafter(time) :> void: {
// timeout = true;
// time += XS1_TIMER_HZ; // One second
// break;
// }

// timeout = false;

Normal
Combinable
Distributable

Normal
Combinable
Distributable
Elegant but difficult

MY XCORE-200 EXPLORERKIT BOARDS’ PROCESSOR

XEF216-512-TQ128 Datasheet 2

1 xCORE Multicore Microcontrollers

The xCORE-200 Series is a comprehensive range of 32-bit multicore microcon-
trollers that brings the low latency and timing determinism of the xCORE architec-
ture to mainstream embedded applications. Unlike conventional microcontrollers,
xCORE multicore microcontrollers execute multiple real-time tasks simultaneously
and communicate between tasks using a high speed network. Because xCORE
multicore microcontrollers are completely deterministic, you can write software to
implement functions that traditionally require dedicated hardware.

FLASH

Hardware response ports

X0Dxx
I/O pins

Hardware response ports

X1Dxx
I/O pins

OTP OTP

x
C

O
N

N
EC

T
 S

w
it

ch

PLLxTIME
scheduler

xTIME
scheduler

JTAG

SRAM SRAM

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

USB Li
n
k
 8

RGMII

Figure 1:
XEF216-512-
TQ128 block

diagram

Key features of the XEF216-512-TQ128 include:

∑ Tiles: Devices consist of one or more xCORE tiles. Each tile contains between
five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.

∑ Logical cores Each logical core can execute tasks such as computational code,
DSP code, control software (including logic decisions and executing a state
machine) or software that handles I/O. Section 6.1

∑ xTIME scheduler The xTIME scheduler performs functions similar to an RTOS,
in hardware. It services and synchronizes events in a core, so there is no
requirement for interrupt handler routines. The xTIME scheduler triggers cores
on events generated by hardware resources such as the I/O pins, communication
channels and timers. Once triggered, a core runs independently and concurrently
to other cores, until it pauses to wait for more events. Section 6.2

∑ Channels and channel ends Tasks running on logical cores communicate using
channels formed between two channel ends. Data can be passed synchronously
or asynchronously between the channel ends assigned to the communicating
tasks. Section 6.5

∑ xCONNECT Switch and Links Between tiles, channel communications are im-
plemented over a high performance network of xCONNECT Links and routed
through a hardware xCONNECT Switch. Section 6.6

X006990, XS2-UEF16A-512-TQ128

Figure 1: XEF216-512-TQ128 block diagram, from XEF216-512-TQ128 Datasheet. 2018/03/23  
Document Number: X006990 
http://www.xmos.com/download/private/XEF216-512-TQ128-Datasheet%281.15%29.pdf.  
As used in the xCORE-200 eXplorerKIT.

‣ 2 tiles (500 MIPS per tile (or dual))
‣ 8 cores per tile (=«Logical cores»)
‣ xTIME scheduler. If # cores active:
‣ 1-4 cores: 1/4 cycles each
‣ 5-8 cores: all cycles shared out
‣ Deterministic thread execution
‣ Thread safe
‣ pragma for some deadlines

‣ Channels: untyped. Synch or asynch
‣ XC chanends (32 per tile)
‣ Not between tasks on the same core

‣ XC interface (typed and role/session)
‣ May use chanends or locks or sharing of
select or context (blocks of state data)

‣ Shared memory & no data bus contention
‣ No cache
‣ No DMA
‣ I/O does not use memory bus

‣ Also supported/used by XC
‣ Locks (4 per tile). Runtime
‣ I/O ports
‣ Clock blocks (6 per tile)
‣ Timers (10 pr tile)

INSIDE THE TOOL CHAIN (FROM AN INSIDER)

▸ The xCore compiler handles the «lowering of interfaces» onto statically and
dynamically allocated channel resources

▸ Program Content Analysis (optional but on by default) into a pca-file (xml)

▸ Compilation into Abstract Syntax Tree

▸ Specialisation stage using pca-file

▸ The XC compiler will generate multiple versions of «interface lowered» code

▸ for when the server and client are on different tiles or cores

▸ for when the server and client are actually combined

▸ for when the server and client are actually distributed

▸ for when a server may need to be re-entrant (yielding), due to a possible
calling cycle

▸ The linker runs, linking together the object code, and throwing away unused
(non specialised) functions

▸ In an .s-file there would be duplicate content but with different boiler plating
regarding how chanends and blocks of state data (holding chanends) are used

MATTER #3 SINCE LAST YEAR: XC TASK TYPES

SUMMARY (XC)

Code example showing scheduling: 
http://www.teigfam.net/oyvind/home/technology/165-xc-code-examples/#scheduling

▸ To utilise the HW resources better

▸ Cores and channels

▸ To allow the user to fully code with tasks

▸ Not only one per logical core

▸ These distinctions are really general and could
probably be used by many to make multitasking as
expensive / affordable as needed only

http://www.teigfam.net/oyvind/home/technology/165-xc-code-examples/#scheduling

MATTER #4 SINCE LAST YEAR: TASK TYPES EVEN FOR EMBEDDED ADA?

My blog note 035 mentions the Ravenscar and Jorvik profiles
Leveraging real-time and multitasking Ada capabilities to small microcontrollers in Journal of Systems Architecture
(March 2019) by Rivas and Tajero
How Embedded Applications using an RTOS can stay within On-chip Memory Limits by Robert Davis, Nick Merriam,
Nigel Tracey at www.realogy.com (2000)

▸ The Ravenscar profile limits the tasking model quite a lot
▸ It is for safety critical systems written in Ada. It basically takes the rendezvous and select

statements away and uses protected types and objects instead

▸ This opens for schedulability analysis
▸ The now being worked on Jorvik profile seems to limit the limitations somewhat
▸ Rivas and Tajero have just recently suggested a task model where the stack is reused. Also

starts off with Ravenscar

▸ «In this paper we present a new Ada run-time environment that includes a new
scheduling policy based on the one-shot task profile that simplifies the implementation
of the Ada tasking primitives and allows stack sharing techniques to be applied»

▸ Much like [[distributable]]?
▸ Also has requirements of code: «we need to restrict the structure of the tasks’ body to

the one expected for a one-shot task»
▸ The idea seems to stem from a paper from the year 2000 by Davis et al

http://www.teigfam.net/oyvind/home/technology/035-channels-and-rendezvous-vs-safety-critical-systems/
https://www.sciencedirect.com/science/article/pii/S1383762118302212
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.5014&rep=rep1&type=pdf

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years
that you wish you could have the time 
to make it even better now

So, if you get into real-time, parallel or concurrent systems
Try to think those five years, ahead Now

HOW DO THEY PROTECT THEM?
SUMMARY:

2018 lecture’s title

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

▸ At application layer (talking with another thread’s  
application layer)

▸ Keeping local state as consistent as possible!

▸ Avoiding, to receive (and send) messages  
that must be handled «later»

FINALLY

▸ It’s easiest if you, your project and your boss agree to
program in Go and need concurrency (goroutines,
channels)

▸ It’s under pressure if you agree on Ada but need the safety
critical profile

▸ It’s utmost difficult if you have an embedded controller
and need concurrency. I would know

▸ Don’t always take the culture «as is». Try challenging it

CHANNELING AGAINST THE FLOW
WHAT DID I MEAN BY THIS?

CONTACT INFO ETC.

▸ This lecture
▸ Full quality, each page only once, no build steps (around 76 MB) 

http://www.teigfam.net/oyvind/pub/NTNU_2019/
foredrag_full.pdf

▸ This course 
NTNU, TTK4145 Sanntidsprogrammering (Real-Time Programming) 
http://www.itk.ntnu.no/fag/TTK4145/information/

▸ My blog notes 
http://www.teigfam.net/oyvind/home/technology/

http://www.teigfam.net/oyvind/pub/NTNU_2019/foredrag_full.pdf
http://www.teigfam.net/oyvind/pub/NTNU_2019/foredrag_full.pdf
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.teigfam.net/oyvind/home/technology/
http://www.teigfam.net/oyvind/me/email.html

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

▸ Clojure core.async 
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infoq.com/presentations/clojure-core-async

▸ New ALT for Application Timers and Synchronisation Point Scheduling  
CPA-2009. Per Johan Vannebo, Øyvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

▸ Last, but not least:

▸ ProXC++ - A CSP-inspired Concurrency Library for Modern C++ with Dynamic
Multithreading for Multi-Core Architectures by, Edvard Severin Pettersen. Master
thesis, NTNU (2017). Read at https://brage.bibsys.no/xmlui/handle/11250/2453094

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

Thank you!

(More)
questions?

