i NS
RN &

CRARa et W

? My . & 3.
N v Pevs ARSI
-

R Y 7
: i

%8N

v e N

B il £ ey
SN

M—w»»"w" G

v _4...,‘_;,;..-,‘“%‘-‘*‘
= : B

CSP: arriving at the channel island
From hard microseconds to speedy years. Real time in the industry

Thinking about it: Channels more than connect threads. They protect them

CHANNELING AGAINST THE FLOW

p
The full, annotated figure from

«Verden omkring oss», 1955 ("Odhams Encyclopedia for Children»)

shown later in this lecture
\

\

CSP: arriving at the channel island
From hard microseconds to speedy years. Real time in the industry

Thinking about it: Channels more than connect threads. They protect them

CHANNELING AGAINST THE FLOW

Autronlé @ embeddec om _
Blogging about conc murf

INVITED SPEAKER, 7. MAYS2019 AT

_NINU, TTK4145 SANNTIDSPROGRAMMERING ﬁAL -TIME A\'h@ln

AS SAID, PREVIOUS LECTURES WERE DIFFERENT FROM THIS

www.teigfam.net/oyvind/pub/pub.html

Fra harde p-sekunder via
mjuke sekunder til forte ar

Sann tid i industrien

NTNU, fag TTK 4145
Real-Time Programming

Gjesteforelesning, 2004, 2005 og 2006

FROM HARD MICROSECONDS TO SPEEDY YEARS @YVIND TEIG
SENIOR DEVELOPMENT ENGINEER, AUTRONICA

INVlTED SPEAKFR 24 ADDII anas »=
53 G

COMPONENT
HIS RUNS IN AN AUTRONICA «DUAL SAFETY» -
N AUTRONICE:

«SAFE RETURN TO PURT» (IMO) OR JUST EXTRA SAFFTY f

oam (2()\1)

@yvind Teig
http://home.no.net/oyvteig/

Autronica Fire and Security (AFS)
- A Kidde company

T8PPI ILLYER

Disney Dr
@.ﬁp

s your M

A[A
rT.’-/‘

Pioneering Spirit
(2013)

\&vMRUTV

PART OF UTC SINCE 2005

FIRE DETECTION SINCE 1957

29859 in Norway.

AutroKeeper: pate nt3
PCT. /NO2009/00031 9i

http://www.teigfam.net/oyvind/pub/pub.html

THIS LECTURE

GOAL <

» What are channels (and XC «interface»)? Co‘\c&‘e(\d
\X
» Why are they more than mere corr;;o\s?’\.’?c\:\ation channels?
» What problems do they ofife’o\\ﬂ\‘%\solution to?
0
» A little about myself ,&QQ&%\

&
« . .
» ..and my expg?znce from more than 40 years in the industry

% U =
o
\e\\\\

> (btw('\eg\x‘g lecture is on my home page (ref. at the end))
\\0
S

0
<e.plus some HSTIERSHISASINCERASTNEARN

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

» «Sketch» is a «project»
» Top level: .ino-files (not main.c)

» First for Atmel AVR processors

» | have played with Arduino SAMD Boards
(32-bits ARM Cortex-MO0O+)

ARDUINO IDE ARDUINO

https://www.arduino.cc/en/Tutorial/BareMinimum

BARE STANDARD CODE NEEDED

sketch_jan0O9a | Arduino 1.8.5

sketch_jan09a

lEl/oid setup() {
2 // put your setup code here, to run once:

3
4}
5

6Elvoid loop() {
7 // put your main code here, to run repeatedly:

8
9 %

Sketch uses 9504 bytes (3%) of program storage space. Maximum 1s 262144 bytes.

1 Adafruit Feather MO on /dev/cu.usbmodem1431

https://www.arduino.cc/en/Tutorial/BareMinimum

ARDUINO IDE %

ARDUINO
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

BARE STANDARD CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{
init();
initVariant();

#if defined(USBCON)
USBDevice.attach();

#endif

setup();
for (55) {

loop();
if (serialEventRun) serialEventRun();

¥

return 0;

https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

ARDUINO IDE %

ARDUINO

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

» «As the others have stated, no you can't have multiple loop
functions»

» «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

» = Concurrency?

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

» | once saw a system like this, it took a person a year to fix the mess!
» The problems were races between interrupts and «main»
» How to send results away?

» It's a start, it works here, but it's not a general problem to design a scheduler

by

ARDUINO IDE %

ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

» As | see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

» Beware of «toy» schedulers!

» But Arduino is not a toy as such!

Z
B0%void loop» ON MY DESK Prr

&° RADIO MODULE Car key
< G36.0MHZ |NSTEAD 433.706 MHE

@-SPI-BUS bus & cross c¢ u|ling for short breakout board (9 of 13 pins)
SW pin mapping kept

I RG Colour
[LD here
) 1-1 3v3 RED
- \ 2-2 GND BLACK
1 ’ : 2! 3-5 sCK £C{ BLUE
L Q & | S | 4-6 MISO } I30 GREEN
;@ 38 ! 5-7 MOSI }CSI ORANGE
: & o i 6-8 CS £10 YELLOW
LS ®: 7-3 EN ¢ LILAC
5 i 1 S i 8-4 IRD/GO #¢ WHITE
! 9-9 RST §° GRAY

Feather

Y gV ZYUTHY pudh9idYr € LS

2 iz Adafruit
3071
O e @5m; m ~ Ve et e Hoperf Electronics
Feather M@) — A N | - X RFM69HCW
SCK, MOSI, MISO pins - ST Semtech

by board designers, even
printed on the board

SX1231 inside

433 MHz & 1/4 wave = 16,5 cm wire

llustrative laid down

Adafruit

RFM69HCW Transceiver Radio Breakout

433 MHz - RadioFruit connected to an
Adafruit Feather MO basic proto @yvind Teig 01.2018

ey OO

ARDUINO

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

XM0S 8-CORE ARM CORTEX MO ARM CORTEX MO
XC, C, C++

SOTO0 " B ‘

aweReERS
als s le)lele e el :

Concurrency No concurrency
MORE LATER NEXT: Scheduler

ARDUINO: scheduler AND THREE loop ()

©,0,

ARDUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

. .DS_Store

int ledl = 13; v [examples

int led2 = 12; DS Store
int led3 = 11; v [MultipleBlinks

void setup() { keywords.txt
Serial.begin(9600); _ library.properties
_ README.adoc
// Setup the 3 pins as OUTPUT Y B SIC
pinMode(ledl, OUTPUT); | o Scheduler.cpp
pinMode(led2, OUTPUT); B Scheduler.h

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.

//

Scheduler.startLoop(loop2);

« MultipleBlinks.ino

https://www.arduino.cc/en/Tutorial/MultipleBlinks

https://www.arduino.cc/en/Reference/Scheduler

// Task no.2: blink LED with 0.1 second delay.
void loop2() {

"loop" is always started by default.

Scheduler.startLoop(loop3);

digitalWrite(led2, HIGH);
delay(100);
digitalWrite(led2, LOW);
delay(100);

// Task no.3: accept commands from Serial port
// '0' turns off LED

// 'l' turns on LED

void loop3() {

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

//
//
//
//

IMPORTANT:

When multiple tasks are running 'delay' passes control
to other tasks while waiting and guarantees they get
executed.

delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

if (Serial.available()) {

char ¢ = Serial.read();

if (c=='0") {
digitalWrite(led3, LOW);
Serial.println("Led turned off!");

}

if (e=="'1") {
digitalWrite(led3, HIGH);
Serial.println("Led turned on!");

}
}

// IMPORTANT:

// We must call 'yield' at a regular basis to pass
// control to other tasks.

yield();

@
&
]E}
e
|

i www.arduino.cc/en/Reference/Scheduler & A A)) HEH (4] i m]

Arduino-Sch o @ @ ¢ O 4@ O = Ikke sikkert — web.archive.org/web/2012110102374

Arduino - Scheduler
HOME STORE SOFTWARE EDU RESO

https://www.arduino.cc/en/Reference/Scheduler

This is a cooperative scheduler in that the CPU switches from (fl 64 captures

passing control between tasks. 1 Nov20l2 16 Mar 2019

NB : The Scheduler library and associated functio.
NB : The Scheduler library and associated functions are exper change in future releases, it is still under developi

releases, it is still under development.
+ startLoop()

- startLoop() + wait()
- yield() * yield()

This is all too usual: concurrency is really not their business: no multi-threading here!

We often have to use libraries, perhaps even if

» <threads.h>is an option for C11/C18 compilers

» and that it supports atomic

Often home built schedulers

» Often with a steep learning curve. | would know

Repeating somehow

» Solutions would use critical sections (often as disable/enable of interrupt?),
semaphores, locks and mutexes only

» We need time handling, waiting for a set of higher level events with an optional
timeout

» We do not appreciate busy polling

» etc..

XC Reference Manual

G ©
N7 (VeRsIon 8.7) xTIMEcomposer User Guide

INMOS I-l .tEd " Tools Version: 14.0.x
occun:le XMOS

XMOS Programming|Guide
Reference 2008/07/16
Manual

Document Number: XM004440A

& Kk

Authors:

Douglas WATT
Richard OSBORNE
David MAY

Copyright © 2008, XMOS Ltd. Publication Date: 2015/10/29
XMOS © 2015, All Rights Reserv

R.HOARE SERIES EDITOR All Rights Reserved

XMOS

LANGUAGES (THAT | HAVE USED) == .

» Assembler (1975-1980) » occam (1990-2001)

» PL/M (1980-1990) » C(2002-2017-(present))

» [Java (1997-2000)]

» Modula-2 (1988-1990)
» [Perl (2002)]

» MPP-Pascal (1982-1988) » XC (privately 2012-present)

RUNTIMES / SCHEDULERS (THAT | HAVE USED) (1/4)

» Runtime/scheduler is about which process models we have used

» Rather than all code in a big loop in main
» More later
» 1978: No runtime system, assembly only
» Diesel start/stop for emergency power
» 1979: MPP Pascal with early «process» term
» Protocol conversion, fluid level measurement and fire detection
» 1980: PL/M with NTH-developed run-time
» Ship’s machine room monitoring
» 1982: Assembler with runtime that | developed

» Fire detection

RUNTIMES / SCHEDULERS (THAT | HAVE USED) (2/4)

» 1988: PL/M with runtime that | developed
» Fire detection (here?) %\
» 1988: Modula-2 with purchased run-time and coroutines

» Fire detection

» 1990: INMOS transputer with built-in scheduler in HW
programmed in occam

» Ship’s engine monitoring
» 1995: C with VxWorks os

» Fire detection

RUNTIMES / SCHEDULERS (THAT | HAVE USED) (3/4)

i_SoftBlink_BNA180.c i (i_SystemTimer_BNA180 }\

425, RED LED D o
Lt g P - cDc = o ! i_AL_Com_BNA180.c
X ASSERTS §m§ N\ '8 D Timer ticks 10 ms ! I ' PALC Rt .~ "
power g i@ | internal | | 3
Restart - Watchdog | g5 Y [i B
CHAN_SIGNAL_POWERS A | la i 0D I l CHAN_SYNCH_WL_X17 A | Three AL_Com |
Normallyl'o relay change & N 1] 5 | : M |
_______ HAN_E] 1__ | :a = ChanSched_TimersHandler | | AN SYNCH m: I .-----------------I-‘
CHAN_REPTIMER_HO_A { [) I e 4 g '
I Write / Erase error 1 [- | | o | ; l' M | | ¢
= EE_PR_OM _______________________________ I_ ;A_N SIGNAL P—Loop—X17 I »OtherSide” I : »
| _nw_ETC_A @ | = = | i
Al JTAG-tool and EEPROM.hex - | CHAN_EGG- L X5 00op_RX | :u‘_,
g Production config files CHAN_SIGNAL | TIMER_X17_LO_A =l & framer [¢----- I..-: |
= = Y _AL Comid Relays 8 S | CHAN EGE- —. I (X1 5) (5) | :2
8 S QI 1o [§ ¢ | TIMER_X18_L0_A | :8'
...... o
o g i_EEProm_BNA180.c 24 | cRc:FLASH & EEPROM <y Write / read error | W I Interrupts: : '
£ ‘ —— 1 _ _ - s S Ik IISIREN - USART R
_ E - — |’ RAM (3 1) USARTT:| E
H ort i o e g
TR VR Runtime files # L]_}/ToStandby : | s ! B s
w AL Comid Relays % | g HW Etc Flags | I | ge |} &
! all | 1 (Dip switch 4 (errors and AbortedToStandby) _ | &&=
4 | 41 23 - cia PN e e rRoM | | x18 [1_Loop_RxTx Lig
""""""" Mscos Next write to next buffer | a i T cHAN_SIGNAL [@ ~ —| & framer SSus 1 8
P e | | _HW.ETC A CHAN SIGNAL | CHAN SIGNAL M | X18) (7 Al 148
Bootloader CHANSIGN| | | wrire™ READ | —HW_ETC_. ALxis Al 1AL X17 A CHAN_SIGNAL (X18) (7) |c -
""""""""""" ALHRA | i | ! \J | — _POWERS A | | Mmemern. |k &
| ; Immedlate response CHAN_SYNCH_ = el _—l— ledge,5or2sme | P fee-um- |...>. g_
- 4 LA X18 A ok T i L
: : 7 — / (@ A~ : o
Analamiia innnds | ; : (A O 7 l D(L Ad H I . -l

» All below used in fire detection related applications
» State as of June 2017
» 2000: FSM scheduler: Most of our controllers use an

» asynchronous SDL-based scheduler
» 2006: CHAN_CSP: However: in two of the controller there are B Code

-

» synchronous channels on top of the FSM scheduler examples
» 2010: ChanSched: finally in one of the controllers compared

. synchronous channels on top of no other runtime («naked»)J later

RUNTIMES / SCHEDULERS (THAT | HAVE USED) (4/4)

» 2012: XMOS XCore multi-core with built-in scheduler etc. in HW

» Blogging and aquarium controller box

» Programmed in XC
» Also takes C and Cpp (nice for porting)

» Much more later

Aquarium radio client (listener)

ARDUINO: the three loop () architecture to the rescue?

WHAT ABOUT (USER LEVEL) INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a
USART or TIMER) that mostly deliver data to it, are separate
silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM)
can offer

» However, an «interrupt thread» («task», «process») (??) does
not supply you with general «thread», «task», «process» terms

Interrupt _ Driver <
hw & sw > thread >

€ oo >

CONCURRENCY

[1] https://en.wikipedia.org/wiki/Transputer
[2] https://en.wikipedia.org/wiki/XCore_Architecture

[also see] https://en.wikipedia.org/wiki/Parallax_Propeller

WHAT ABOUT NO (USER LEVEL) INTERRUPTS?

» Two processors | have worked with do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)
» there was one 'event' line treated as a channel (no data) in occam [1]
» The XCore multi-core architecture
» adds a more generalised |I/O-pad architecture (edge, timer, etc.)
handled in the XC language and intrinsic macros or functions.
«Between standard processor and ASIC»
» | think their deterministic timing guarantee (by compiler and tool)
may give full control of interrupt latency [2]

https://en.wikipedia.org/wiki/XCore_Architecture
https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

7 [1] http://wotug.cs.unlv.edu/generate-program.php?id=1
AT NTN U - [2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

[3] https://swtch.com/~rsc/thread/

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

occam’ 2

but occam-pi is used as a research language Y Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]
» go is(?) presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMOS multi-core processors @
» As mentioned, | will show you some here. Has channels and interfaces
» Also based on CSP

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada
https://swtch.com/~rsc/thread/

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded programming have a reputation for
difficulty.

We believe this is due partly to complex designs such as pthreads and
partly to overemphasis on low-level details such as mutexes, condition

variables, and memory barriers.

g2
w https://golang.org/doc/fag#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

One of the most successful models for providing high-
level linguistic support for concurrency comes from

[Hoare'sﬁ:ommunicating Sequential Processes, or

Occam and Erlang are two well known
languages that stem from CSP.

Go's concurrency primitives derive from ...notion of

l channels as first class objects./™ Pi-calculus

e) e) | »
@ https://golang.org/doc/fag#csp

'
'
'
'
'
1
)

CONNECT THREADS

https://golang.org/doc/faq#csp

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines
» XC is closest to having all properties
» since | guess, if it's parallel then it's concurrent
» Ada if «Ravenscar profile» (that removes rendezvous!)
» Go is «not real-time» they say

» Occam on many transputers and one transputer;
different properties. Not really relevant any more

W

(o IR W) IR~

~J

D O ™

W ™

(o T W 4 B =

“J 3 I
- o WL O

™~J

Y

r~J “J “J “J “J “J
~N o Ww B

W MMM
S W ™

[

L

W Ww Ll
W ™

W o W W
W o ~ oy U &

]

m™J

J

r - " . . .

un &

port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; W\T“ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[1]; THIS E PARALLEL
par {<€4—
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
A i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso, T
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;

XC from my aquarium controller and xTIMEcomposer

4 - Samtaler
0) 1 . o .
! . Du far figurene til & holde en samtale ved hjelp
= 0 % = 1 U VA 7, [ALklasspna wcand maldina..... [aVaTRV7=Y'a% N I

@ 1 W : 0 1 £ %

Spill-02 data-

PROGRAMMERING /\ Venteklosser

ks ‘Fﬂﬁanﬁm; i .
. sl : Denne klossen sender en melding. Deretter venter
£ 0 ¢ 1 o # 0 & &
.) . programmet pa at alle skriptene skal bli ferdige
W . iogor -med 4 reagere pa meldlngen for det fortsetter.

x 0 ENILLUSTRERT TRINN-FOR-TRINN-GUIDE <]

=
|

meldlngen

" D
. - n andr
utlaser skriptet til - . - iy d SEpC
sz gir et svar til den
den andre apen.
forste.

Spill-og data-
PROGRAMMERING
Spectrum forlag 2017
ISBN 978-8231611752

—_)

Nar det andre
skriptet er slutt,

- el 0 g TR R fortsetter detforste. ____._._.._.... bemeeees
Computer Coding for Kids ; e
. Level of synchronisation g
by Carol Vorderman g s don
DOFIing KinderSIGy } ApplicatiOn Ievel? Etfedje Takk, bare bra!

ISBN 978-1409347019 » But waiting for «ack» is invisible

’ No Go-like channel here

[E SEEER R aa——— |

melding ... og vent». Hvis klossen «send melding» hadde blitt
brukt, ville apene snakket i munnen pé hverandre.

Using Message Passing to Transfer Data Between Threads
https://doc.rust-lang.org/beta/book/ch16-02-message-passing.html

fn maanO{
let (tx, rx) = mpsc::ichannel(Q);:

DK

println!("Got: {}", received);

https://doc.rust-lang.org/beta/book/ch16-02-message-passing.html

MATTER #2 SINCE LAST YEAR: RUST

https://doc.rust-lang.org/std/sync/mpsc/

Structs

T T EEEEE ==~

Elntolter

-—---- .

[—— »

Recelver
RecvError
SendError
Sender

SyncSender

-
“CmEE s -

An owning iterator over messages on a Receiver, created by Receiver::into_iter.

An iterator over messages on a Receiver, created by iter.

The receiving half of Rust's channel (or sync_channel) type. This half can only be owned by one thread.

An error returned from the recv function on a Receiver.

An error returned from the Sender: :send or SyncSender: : send function on channels.

The sending-half of Rust's asynchronous channel type. This half can only be owned by one thread, but it can be cloned
to send to other threads.

The sending-half of Rust's synchronous sync_channel type.

» An iterator that attempts to yield all pending values for a Receiver, created by try_iter.

[Deprecated| Experimental A handle to a receiver which is currently a member of a Select set of receivers. This handle is
used to keep the receiver in the set as well as interact with the underlying receiver.

[Deprecated| Experimental The "receiver set" of the select interface. This structure is used to manage a set of receivers
which are being selected over.

Disclaimer: | have not coded a line of Scratch or Rust

https://doc.rust-lang.org/std/sync/mpsc/

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any

» Concurrency TS futures are not widely implemented
TS - Technical Specification

https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf

ttps://talks.golang.org/2012/concurrency.slide#31

SELECT (ROB PIKE: «G0 CONCURRENCY PATTERNS»)

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Rob Pike

Google I/0 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated

e Selection blocks until one communication can proceed, which then does
e |f multiple can proceed, select chooses pseudo-randomly
e A default clause, if present, executes immediately if no channel is ready

select , ives
casé vl = <-cl: A1ternat1ve iei%ch
fmt.Printf("received %v from cl\n", vl) w, oK = <-ch
case v2 := <-cC2: w, oK _ <-ch
fmt.Printf("received %v from c2\n", v1) var x» O 7 ch
case c3 <- 23: var X, K

fmt.Printf("sent %v to c3\n", 23)

default: Optional, introduces pysy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}

https://talks.golang.org/2012/concurrency.slide#31

W

runtime scheduler

transputer CSP-type
schedulers

buebru
av stein j
[Y5 3

o o :
lystfar

Wi R

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige
kabler som gir over tirn i begge bruender og er

erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru- forankret i kraftige fundamenter ved bruendene.

den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- Bergmte hengebruer er Brooklyn-brua i New

halvgya og over til Wales. andre som barer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Verdanc lancora tumnal fae hilewafills et bt i e et | L e e S S R e e : ; i X

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control
» Waiting ships and waiting cars are «orthogonal» (?)
» Some bridges are for cars, some for trains
» Some bridges are tall enough to let most ships through
» Which part of this drawing might most resemble a
CSP type system? (Even if CSPm may model everything)

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (ok!)
» ok, if it's not disturbed!
» Now it is protected!
» Doing something undisturbed in the castle
» | guess that this is the most important page in this lecture!

CHAN?

TERMINOLOGY?

THEY PROTECT THEM

i kanalsluse.n slippes vannet inn sa vannspeilet stiger og lgfter lekteren,
eller det slippes ut si lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

“““““““

~ gjennom .
5145 4 4, 10 S

A CANAL LOCK HAS SEMANTICS

A CHANNEL HAS SEMANTICS

» Ship in one direction per turning

» The lock keeper operates it

» It has «states»

» Channels, buffers, queues, pipes also have their semantics
» Simplest CSP chan: synchronous, one-way, no buffer

CHANNEL SEMANTICS

A

°)o)

Has been
undisturbed
and running

A:run all the time!

first: have result!

B: dance - busy!

second: ready!

wait/sleep/block
send > receive

more to do? synchronous
unbutfered thanks! paint

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data
» Goroutine will block until ready (or get an «ok/err» if you need to)

» But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

» Buffer full when no more memory: restart!(®

» Therefore:

MY USB WATCHDOG (AND RELAY OUTPUT) BOX

http://www.teigfam.net/oyvind/home/technology/187-my-usb-watchdog-and-relay-output-box/

AN ADVICE

«Ix-delay/timeout-pollRx>» IS NOT A CONTRACT!

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

PushButton, will H heat up after t2? | t21 ’7000”/0,7

~L_ D K : e
OP BO_ [P2 I A B o0 ot
Sl LED2 : ¢ PNy eeded
:)

X1 C13 (= }----=E=e. > X67
—>(P1 | { p3 |. css | ps > [Ll —]
Jrest 7 gl ; X76

A N A 5 A I Id|
ca3||C34 5
A "4, s A
ASSERT (%) v e . ASSERT(})
A .
[P4 | ;
Al LED4 Qyvind Teig, 6.2016 (1.2018)
S AMA A s
Client/server deadlock free «Knock/come» is deadlock free XCHAN is deadlock free [2]
P1-P3, P2-P3, P4-P3 P3-P5 P6-P7

\ No timeout between internal processes! If timeouts: mess guaranteed!

--

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

e [)
distinct - P3 }4 ! P5
channels ! - J

'_---~

c_1 - Slave Master

D*..b --------- ISO -O-C-I(-I -------- ’.
. < data
A DT T A 5
data, thanks' come! *, datal] ¢ c 9
- Atomic “‘\ LR J

data! “,

------- Bl----p----c--c------Xe--p data, thanks!

. Roles o

i ; Go:(?) "
""" +o knock!

KNOCK-COME, THEN DATA i* maybe sinated i

. ® make (chan int,1)

)
P

» Deadlock free communication pattern ~ :® thﬂLPf3 will not re-knock!
S »® on before

» Both directions | ' come!

» Master can send data any time e has been received

» Slave must «knock» . 0Thus it will never block

oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

http://oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

GUARDS

Go “simulates” a guard if a communication componentis nil

Referred in http://www.teigfam.net/oyvind/pub/pub_details.htmI#XCHAN

The Go Playground m w

func Server(in <-chan int, out chan<- int) {
value := 0 // Declaration and assignment
valid := false // —"—
for {

// If we have no value, then don't attempt
// to send it on the out channel:
if !valid {
outc = nil // Makes input alone in select

select {

case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
valid = true

case outc <— value: // SEND?
valid = false

¥

http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

GUARDS

XC has guards built into the language.Plus interface

https://www.xmos.com/published/xmos-programming-guide

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
5 ..
2 6 select {
B 7 case 1.fO): {
8 e
9 } break;
2| 10 case (e == 1) = 1.g(): {
11 e
12 } break;
2 13 }

Implemented with channels, states and/or locks by the XC compiler

As | have already shown, | use this at home:

https://www.xmos.com/published/xmos-programming-guide

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

K\
CS“OXO& ,6@"’6 XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
’bo<(\0
5
)
KEYWORDS interface, server, client AND slave etc.
(rtypedef interface startkit_adc_if { h interface startkit_adc_if i_analogue;
[[guarded]] void trigger(void);

[[clears_notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit_adc_if; e . N
interface E W, [[combinable]] \\
i_analogue.trigger(); void therm_task
[[guarded]] // ...
: N while(1l) {
s : select {
(R §) case wait_for_button => c_button_2 :> int x: {
4 cerver N\ 1_analogu_e.'comp'1ete(); f client A (/ ceo .
-’L [[notification]] i_analogue.trigger();
LN LR R RS RNNERNENNERNERSERNERESRHNERHERSESRHSEBRHNEBRSERSERSERNRSERBSERSERSES;H}] EI 9 break; }
adc task therm task case wait_for_adc => i_analogue.complete(): {
— < - — /] ...
Ei—ana1°9“e're§dﬁad°fvals'x)E if (i_analogue.read(adc_vals.x)) {
[[combinable]] [[clears_notification]] [[combinable]] // Use it
! V) !) |y oo
. J J !
- }
}
Also has traditional chan (untyped) } }
Guaranteed deterministic real-time response L Drawing by Qyvind Teig)

This pattern is understood by the compiler and it is deadlock free

GUARDS

occam, too. Butitdidnthave interface

https://en.wikipedia.org/wiki/Occam_(programming_language)

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

» Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)
» Any way gives the wanted effect of «protection»

https://en.wikipedia.org/wiki/Occam_(programming_language)

GUARDS

PyCSP https://qithub.com/runefribor csp/wiki/Getting_Started With PyCSP 2

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])
» TimeoutGuard(seconds=<s>, action=[optional])

» SkipGuard(action=[optional])

More about «fairness»:

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

» PyCSP

» Performs a fair selection by reordering guards based on previous choices and then executes
a PriSelect on the new order of guards

» Go

» Nondeterministic (pseudo random) choice
y XC

» Nondeterministic (unspecified) choice(?). | have tested it and it seem quite fair
» occam

» Pri select does it, because then one can build fairness «by algorithm»

» But which is best? Or best suit good enough?

» They don’t agree!

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

» A channels API for Clojure

» @Java virtual machine and the Common Language Runtime
» and ClojureScript

» JavaScript -> .NET
» Real threads. Real blocking

» Do watch it! The best to understand what this is all about!

https://www.infoq.com/presentations/clojure-core-async

B — 1 i - | o
— ! | 2 - ‘
= i i BT | o : |
e 5 —— £ ~ ° | ;"
14 " ; ° ‘]
) e 5 o — ' {
-y i

BS-100 fire panel (1990..) Last BS-100 for a ship (2011) AutroKeeper (2010..)
In-house scheduler and Modula 2 Even in display that scheduler Chansched scheduler

() e e ey
» e
Ef"_ '-ﬁ A -
=3 =2 "
ey o] By
e - L > 301 fs e
- 8 3 3 - ~ .

B \N

Transparent transputer links running in LON industrial network, testing a virtual channel router in my office

Ik

1990: 0CCAM WITH PROCESS AND CHANNELS.
SHIP’S ENGINE CONDITION MONITORING

(MIP-CALCULATOR: NK-100)

*.. occam - Microsoft Yisual C++ [break] - [0_Token.inc]

@ File Edit \)’lew Insert Project

Debug Tools Window Help:

Y

B =2EE |

Ky B Ay ”—;—ﬁ-%‘ ‘%IStalt

.

”@@Hub}”d)‘ BO G0 & B

pakmaﬂ

LJ

' (&) ale H:l members| l“ @ Scheduler

O

B2 ClassView

-3 m_syst files =]
4| i B

E%F&ﬁbw-

Address: [0x008b6118

008B61F8
008B61FA
008BE1FC
0D08B61FE
008B6200
008Be202
N08BR204
008B&206
008Be208
008B6204

request numbytes, out

prev. command
this.command :

==}t
WHILE TRUE

SEQ

——{{{ Receive token from input
bytes.in ? numb. received ..

¥C /77777 Received token from input
nunb.received. total

—F}k

——{{{ Declarations
INT numb. required:
BOOL =endAs Envelope;
BOOL zeroSizedCountedArrayPairSent .

o
SEQ
ATl

| HUMB.CMD —— Start the =tate machine

[buffer FROM i0f buffer FOR numb.received]

numnb.received. total + numb.received

—— 1e, Send complete array once

Debugged
occam

linesin C
directly in
Microsoft
Visual C++

A

2 Content [P_Tokenizer_962(5F_P_Tokenizer 9627 =

Yalue -

1995: 0CCAM TO C ON SIGNAL PROCESSOR

L ————————————

DE1086

B). 11—

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

G0942

- - " -

\
&

eTrIYTITYTILY

NTFS2412MC (ki o

« BROSE
— o k)
—— R

]

(\ ...
» . e "
{5, S
- L] . ! .
.
,Nl 2

Alifrsiceeper wit Atinel AVR Xite

-
e

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++
» Project managers need to learn about the «Go potential»
» Don’t take over their toolset without adding your knowledge
» Like channels and «tight» processes (that protect)
» Even if it will be hard to C/C++ schedulers

Whichblock ing do you mean?

= hlocking? = deadlock!

-

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPE

THINKING ABOUT IT:

S
LS MORE THAN CONNECT THREAD

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!

» The red hlocking is blocking of others that need to proceed
according to specification (too few threads?)

» The black blocking is deadlock, pathological, system freeze

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

» Channels and conditional choice (select, alt)
» In proper processes, concurrency solved

» Connecting channels to event loops and callbacks when
that’s what you have in a library (like in Closure core.async,
see Further reading)

i_SoftBlink_BNA180.c

2 repLed [p iy
A cDc I o ' i_AL_Com_BNA1
g = om 80.c
“wg ower N '3 '8 Timer ticks 10 ms ! ! ' PRLC Rt .~ -7
P g2 | internal | ! \
I IE G L/ ' (\ |
CHAN_SIGNAL_POWERS A | 'a @ I : CHAN_SYNCH WL X17_A | - | Three AL_Com |
8 K _WL_X17_,
CHAN_EGGTIMER_H1_A | 12 i@ | | | I
i ZRE ChanSched_TimersHandler | I pT— ! ceccesccccecccecaa- i
CHAN_REPTIMER_HO_A { | | (&] | et Y ()
¥ Write / Erase error ([~ | I | /I e M | |
T e e ey e P_Loop_X17
_EEPROM _ | _ _ _ _ _ _ +-+-4-—————-— \ :CI-IAN_SIGNAL i | ”OtherSide” :
_________ _HW_ETC_A
= JTAG-tool and EEPROM.hex i | T | @ | I_Loop_Rx
= S CHAN_EGG- [X15 |
g Production config files | Cﬂcg ‘_NSé(Fi.I\slAk | TIMER_X17_LO_A - | = &framer [----- i
= ALsomia _(Beisys), } & ¢ — =] = = CHAN_EGG- — (X15) (5)
o S g Checker ! TIMER_X18_L0_A | I
T |
= | i_EEProm_BNA180.c £ | CRC: FLASH & EEPROM l o W | ———
] 2 S S—— > 1(.) USARTRx |
E : ,..l--:&...'" — 4 MR USART Tx |
w - Runtime files ; a‘--'..i-"‘ToSlandby i | . I Timers |
ul AL_Comid Relays 1d D i |g HW Etc Flags I | Edge
B & a (1k ________ L (Dip switch 4) | {errors and AbortedToStandby) | | I L RxTx |
i \) ; *#‘in] E s s S e S i EEPROM bz @ XE _Loop_ s '--
............ Wasisesiy Next write to next buffer | ¢ o 1 CHAN_SIGNAL R | |CHAN PR m ™ | & framer A |
kY H : v X L
..Bootloader : CHANSIGN| © | wRITE] READ | ; e Gl AL x18_A : | AL xi7.a et & : e, ol
- ilmmedlaiei responseé I CHAN_SYNCH_ Sl Lanan i 5 E‘eL:;:,gﬂolrnésms S b-
[S —————— : (@ LA_X18_A £ |8 T -'—f(-) """"" s |
Analamia innads 14 ‘ A e # _<I / I D InAd :

Part of process/data flow diagra

«CHANSCHED»: CSP ON AVR XMEGA

----------'

Opto_15_Rx

Loop_Rx

Loop_Tx

- eV

m

» ChanSched: finally in one of the controllers synchronous

channels on top of no other runtime («naked»)

» The runtime was more visible to the application code than |

thought (next page)

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

.

PN

void P_StandardiSEfﬁZSEEJZVOid)
{

CP_a CP = (CP_a)g_ThisExtPtr; //
switch (CP->State) //
//
//

case ST_INIT: {/*Init*/ break;}

case ST IN:

* CHAN_IN(G_CHAN IN,CP->Chan_vall);
CP->State = ST APPL1;
break;

}

case ST APPLl:

{

// Process vall
CP->State = ST_OUT;
break;

}

case ST OUT:

{

CP->State = ST IN;
break;

}

Sync chan comm needs states

void P_Extendedjé&iifiif§>(void)
{

Application CP_a CP = (CP_a)g ThisExtPtr; // Application
and ~__// Init here_ _____ // state only
communication +___ while (TRUE) 3

state {

switch (CP->State)

{
case ST MAIN:

.......................... L

CHAN IN(G_CHAN IN,CP->Chan val2); |

// Process val2

CP->State = ST MAIN; // optionl
break;

Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

SAME CODE IN A LIBRARY AND OCCAM

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
int val3; WHILE TRUE
for(;;) INT val4:
{ SEQ
ChanInInt (in, &val3); in ? val4
// Process val3 -- Process val4
ChanOutInt (out, val3); out ! val4
}
}

LESS READABLE WHEN PERHAPS:

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

http://www.teigfam.net/oyvind/pub/pub_details.htmI|#NewALT

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Tlmeout Tlck)
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0O, Data 0); // first output
while (TRUE)
{
ALT () ; // this is the needed PRI ALT”
ALT EGGREPTIMER IN (CHAN EGGTIMER) ; N

ALT EGGREPTIMER IN (CHAN REPTIMER) ;
ALT SIGNAL CHAN IN (CHAN SIGNAL AD READY);

© 00 d4 o U~ W N R

N N
& W N R o

=
(6}

ALT CHAN IN (CHAN DATA 2 Data 2);
16. ALT ALTTIMER IN (CHAN_ALTTIMER TIME TICKS 100 MSECS) ;
17. ALT END()
18. switch (g_ThisChannellId)
19. {
20. .. process the guard that has been taken, e.g. CHAN DATA 2

21. CHAN OUT (CHAN DATA 0, Data 0);
22. };

23. }

24. }

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

""""" SECONDARY -
i @ T
AL_Com AL_Com+ (if remote) Autro
Safe 1/0 Module 1/0 Module Safe
IN Autro
FieldBus
IN ouT
BSD-310 BSD-310
Loop Loop
control " . control
modules S 2 as ACTIVE modules

WITH CSP & FDR4, PROMELA & SPIN ETC.
FORMAL MODELING

» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop

» Always one side connected

» No oscillations

» Keeps track of the sanity and possibilities of each side
» Switches over in milliseconds when needed

» Formal model gave us roles and protocol elements

produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

http://produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

Unravelling XC concepts [[combinel], [[combinable]], [[distribute]],
[[distributable]] and [[distributed(..)]] plus par and on..

» Task source code not decorated is «<normal» task
» Decorated with [[[combinable]]

» = both of the above «asynchronous» interface / channel comms
» Decorated with [[distributable]]

» = «synchronous» interface / channel comms

» Variants: [[combine]], [[distribute]], [[distributed(..)]]

http://www.teigfam.net/oyvind/home/technology/175-cpa-2018-fringe/
http://www.teigfam.net/oyvind/home/technology/175-cpa-2018-fringe/

MATTER #3 SINCE LAST YEAR: XC TASK TYPES

Task type Usage

Normal Tasks run on a logical core and run independently to other
tasks. The tasks have predictable running time and can
respond very efficiently to external events.

Combinable Combinable tasks can be combined to have several tasks
running on the same logical core. The core swaps context
based on cooperative multitasking between the tasks driven by
the compiler.

Distributable Distributable tasks can run over several cores, running when
required by the tasks connected to them.

From the XMOS Programming guide

01
02
03

04

05
06
Q7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
39
40
41
42

interface button_if_t {
void but (int x);
55

typedef enum {false,true} bool;

[[distributable]] // [[combinable]]

void handle (server interface button_if_t i_but[3]) {
// 1int cnt = 0;
// timer tmr;
// int time;

» XC

’,1 Constraint check for tile[@]:
Cores available: 8,
Timers available: 10,

>2 Chanends available: 32,
Memory available: 65536,

(Stack: 372, Code: 882, Data:

// bool timeout = false; }3 Cogstmint §Tegl1< for tile[0]: .
// tmr :> t‘i_me; ores avaiLaole: s
while (1) { Timers available: 10,
select { Normal Chanends available: 32,
case i_but[int i].but (int ms) : { . Memory available: 65530,
// Do something Combinable (Stack: 404, Code: 1228, Data:
// timeout = false: o o Constraints checks PASSED.
. ’ Distributable
break;
} . .
// case tmr when timerafter(time) :> void: { }lll Cogstr'alnt CTeEI{ for tile[@]: .
// timeout = true; ores available: ,
// time += XS1_TIMER_HZ; // One second Z;mersdaVGIIQTIE{ ;g,
// break; anends available: ,
// } Memory available: 65536,
1 (Stack: 404, Code: 1132, Data:
// cnt++; Constraints checks PASSED.

int main (void) {
interface button_if_t i_but[3];

>5 Constraint check for tile[Q]:
Cores available: 8,
Timers available: 10,
Chanends available: 32,

../src/main.xc:366:1: error: distributed statement must be a call
to a distributable function

par { Memory available: 65536,
[[combine]] [[combine]] (Stack: 376, Code: 1090, Data:
par (int j =0; j < 3; j++) { Constraints checks PASSED.
handle (i_but); button (i_but[j]);
button (i_but[0]); %
button (i_but[1]); [[distribute]] // [[combine]]
putton Ci_but[2]): par { »6 Wrong error message
} handle (i_but);
) ; Normal
t Q; o
, e Combinable
Distributable

Elegant but difficult

used:
used:
used:
used:
210)

used:
used:
used:
used:

220)

used:
used:
used:
used:

220)

used:
used:
used:
used:

262)

OKAY
OKAY
OKAY
OKAY

OKAY
OKAY
OKAY
OKAY

OKAY
OKAY
OKAY
OKAY

OKAY
OKAY
OKAY
OKAY

MY XCORE-200 EXPLORERKIT BOARDS" PROCESSOR

X0DxXx XTIME PLL XTIME X1DxXx
I/0 pins scheduler scheduler 1/0 pins
Hardware response ports | | JTAG || Hardware response ports

XCORE logical core xCORE logical core
XCORE logical core XCORE logical core
XCORE logical core _I I

XCORE logical core

XCORE logical core FLASH

XCORE logical core i
XCORE logical core

XCORE logical core
XCORE logical core —I I

XCORE logical core
I— XxCORE logical core

XCORE logical core _I
XCORE logical core

XCONNECT Switch

Link 8

Figure 1: XEF216-512-TQ128 block diagram, from XEF216-512-TQ128 Datasheet. 2018/03/23
Document Number: X006990
http://www.xmos.com/download/private/XEF216-512-TQ128-Datasheet%281.15%29.pdf.

As used in the xCORE-200 eXplorerKIT.

» 2 tiles (500 MIPS per tile (or dual))
» 8 cores per tile (=«Logical cores»)
» XTIME scheduler. If # cores active:
» 1-4 cores: 1/4 cycles each
» 5-8 cores: all cycles shared out
» Deterministic thread execution
» Thread safe
» pragma for some deadlines
» Channels: untyped. Synch or asynch
» XC chanends (32 per tile)
» Not between tasks on the same core
» XC interface (typed and role/session)
» May use chanends or locks or sharing of
select or context (blocks of state data)
» Shared memory & no data bus contention
» No cache
» No DMA
» 1/0 does not use memory bus
» Also supported/used by XC
» Locks (4 per tile). Runtime
» 1/O ports
» Clock blocks (6 per tile)
» Timers (10 pr tile)

INSIDE THE TOOL CHAIN (FROM AN INSIDER)

The xCore compiler handles the «lowering of interfaces» onto statically and
dynamically allocated channel resources

Program Content Analysis (optional but on by default) into a pca-file (xml)
Compilation into Abstract Syntax Tree
Specialisation stage using pca-file
The XC compiler will generate multiple versions of «interface lowered» code
for when the server and client are on different tiles or cores

for when the server and client are actually combined

for when the server and client are actually distributed

for when a server may need to be re-entrant (yielding), due to a possible
calling cycle

The linker runs, linking together the object code, and throwing away unused
(non specialised) functions

In an .s-file there would be duplicate content but with different boiler plating
regarding how chanends and blocks of state data (holding chanends) are used

MATTER #3 SINCE LAST YEAR: XC TASK TYPES

Code example showing scheduling:

http://www.teigfam.net/oyvind/home/technology/165-xc-code-examples/#scheduling
SUMMARY (XC)

» To utilise the HW resources better

» Cores and channels

» To allow the user to fully code with tasks

» Not only one per logical core

» These distinctions are really general and could
probably be used by many to make multitasking as
expensive / affordable as needed only

http://www.teigfam.net/oyvind/home/technology/165-xc-code-examples/#scheduling

My blog note 035 mentions the Ravenscar and Jorvik profiles

Leveraging real-time and multitasking Ada capabilities to small microcontrollers in Journal of Systems Architecture
(March 2019) by Rivas and Tajero

How Embedded Applications using an RTOS can stay within On-chip Memory Limits by Robert Davis, Nick Merriam,

Nigel Tracey at www.realogy.com (2000)

» The Ravenscar profile limits the tasking model quite a lot

» Itis for safety critical systems written in Ada. It basically takes the rendezvous and select
statements away and uses protected types and objects instead

» This opens for schedulability analysis
» The now being worked on Jorvik profile seems to limit the limitations somewhat

» Rivas and Tajero have just recently suggested a task model where the stack is reused. Also
starts off with Ravenscar

» «In this paper we present a new Ada run-time environment that includes a new
scheduling policy based on the one-shot task profile that simplifies the implementation
of the Ada tasking primitives and allows stack sharing techniques to be applied»

» Much like [[distributable]]?

» Also has requirements of code: «we need to restrict the structure of the tasks’ body to
the one expected for a one-shot task»

» The idea seems to stem from a paper from the year 2000 by Davis et al

http://www.teigfam.net/oyvind/home/technology/035-channels-and-rendezvous-vs-safety-critical-systems/
https://www.sciencedirect.com/science/article/pii/S1383762118302212
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.5014&rep=rep1&type=pdf

that you wish you could have the time
to make it even better now

e

o
» -

~
-
o

P

,‘;4’) /"‘ . /’
;—"’ T _if-"

De to runde mersene med spor til vantene sages
ut av 2 mm krysshnér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

HOW DO THEY PROTECT THEM?
SUMMARY.

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)
» At «session layer» (interface with client, server etc.)

» At application layer (talking with another thread’s
application layer)

» Keeping local state as consistent as possible!

» Avoiding, to receive (and send) messages
that must be handled «later»

FINALLY

CHANNELING AGAINST THE FLOW

WHAT DID | MEAN BY THIS?

» It's easiest if you, your project and your boss agree to
program in Go and need concurrency (goroutines,
channels)

» It's under pressure if you agree on Ada but need the safety
critical profile

» It's utmost difficult if you have an embedded controller
and need concurrency. | would know

» Don’t always take the culture «as is». Try challenging it

CONTACT INFO ETC.

oyvind.teig@teigfam.net

» This lecture

» Full quality, each page only once, no build steps (around 76 MB)
http://www.teigfam.net/oyvind/pub/NTNU_2019/
foredrag_full.pdf

» This course

NTNU, TTK4145 Sanntidsprogrammering (Real-Time Programming)

http://www.itk.ntnu.no/fag/TTK4145/information/
» My blog notes

http://www.teigfam.net/oyvind/home/technology/

http://www.teigfam.net/oyvind/pub/NTNU_2019/foredrag_full.pdf
http://www.teigfam.net/oyvind/pub/NTNU_2019/foredrag_full.pdf
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.teigfam.net/oyvind/home/technology/
http://www.teigfam.net/oyvind/me/email.html

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

» Clojure core.async
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infog.com/presentations/clojure-core-async

» New ALT for Application Timers and Synchronisation Point Scheduling
CPA-2009. Per Johan Vannebo, @yvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

» Last, but not least:

» ProXC++ - A CSP-inspired Concurrency Library for Modern C++ with Dynamic
Multithreading for Multi-Core Architectures by, Edvard Severin Pettersen. Master

thesis, NTNU (2017). Read at https://brage.bibsys.no/xmlui/handle/11250/2453094

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

(More)
questions?

Thank you!

