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» What are channels (and XC «interface»)?

» Why are they more than mere communication channels?
» What problems do they offer a resolution to?

» A little about myself..

» ..and my experience over 40+ years in industry

» (btw: This lecture is on my home page (ref. at the end))
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» Top level: .ino-files (not main.c)

» First for Atmel AVR processors

» | have played with Arduino SAMD Boards
(32-bits ARM Cortex-MO0O+)
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BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

» | once a system like this, it took a person a year to fix the mess!
This was between interrupts (more later) and «main» and it was written in
assembly

» How to send results away?

» It's a start, it works here, but it's not a general problem to design a scheduler by
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» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

» As | see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

» Beware of «toy» schedulers!

» But Arduino is not a toy as such!
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// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

. .DS_Store

int ledl = 13; v || examples

int led2 = 12; .DS_Store

int led3 = 11; v [ MultipleBlinks
. « MultipleBlinks.ino

void setup() { keywords.txt
Serial.begin(9600); _ library.properties

) ~ README.adoc

// Setup the 3 pins as OUTPUT v 1 src
pinMode(ledl, OUTPUT); o Scheduler.cpp
pinMode (led2, OUTPUT); Iischedmerh

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop2);
Scheduler.startLoop(loop3);
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// IMPORTANT:

// When multiple tasks are running 'delay' passes control
// to other tasks while waiting and guarantees they get
// executed.

delay(1000);

digitalWrite(ledl, LOW);
delay(1000);
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// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

_ .DS_Store
int ledl = 13; v [ examples
int led2 = 12; .DS_Store

int led3 = 11; v [ MultipleBlinks

« MultipleBlinks.ino

keywords.txt
 library.properties

void setup() {
Serial.begin(9600);

_ README.adoc
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void loop2() {

Scheduler.startLoop(loop3);
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delay(100);
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// Task no.3: accept commands from Serial port
// '0' turns off LED

// 'l' turns on LED

void loop3() {

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control

// to other tasks while waiting and guarantees they get

// executed.
delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

if (Serial.available()) {

char ¢ = Serial.read();

if (c=='0") {
digitalWrite(led3, LOW);
Serial.println("Led turned off!");

}

if (e=="'1") {
digitalWrite(led3, HIGH);
Serial.println("Led turned on!");

}
}

// IMPORTANT:

// We must call 'yield' at a regular basis to pass
// control to other tasks.

yield();
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// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

_ .DS_Store
int ledl = 13; v [ examples
int led2 = 12; .DS_Store

int led3 = 11; v [ MultipleBlinks
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keywords.txt
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Serial.begin(9600);
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// Setup the 3 pins as OUTPUT v B SrC
pinMode(ledl, OUTPUT); 470.5chedubncpp
pinMode(led2, OUTPUT); . Scheduler.h
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// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
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// Task no.2: blink LED with 0.1 second delay.
void loop2() {
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delay(100);

// Task no.3: accept commands from Serial port
// '0' turns off LED

// 'l' turns on LED

void loop3() {

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control

// to other tasks while waiting and guarantees they get

// executed.
delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

if (Serial.available()) {

char ¢ = Serial.read();

if (c=='0") {
digitalWrite(led3, LOW);
Serial.println("Led turned off!");

}

if (e=="'1") {
digitalWrite(led3, HIGH);
Serial.println("Led turned on!");

}
}

// IMPORTANT:

// We must call 'yield' at a regular basis to pass
// control to other tasks.

yield();
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» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines
» XC is closest to having all properties
» since | guess, if it's parallel then it's concurrent
» Ada if «Ravenscar profile» (that removes rendezvous!)
» Go is «not real-time»

» Occam on many transputers and one transputer;
different properties. Not really relevant any more, or.. yet(?)
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January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings
1 1 Java 14.215 %
2 2 C 11.037 %
3 3 C++ 5.603 %
4 5 ~ Python 4.678 %
5 4 v C# 3.754 %
6 7 n JavaScript 3.465 %
7 6 v Visual Basic .NET 3.261 %
8 16 R 2.549 %
9 10 N PHP 2.532 %

10 8 v Perl 2419 %
11 12 N Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %

PL/SQL

1.429 %
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int mainQ) {

par {

}

return 0;

MULTIPLE LOOPS WITH par: XC
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port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X
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port but_left = on tile[@]:XS1_PORT_1N;

‘port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X
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port but_left = on tile[@]:XS1_PORT_1N;

‘port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X
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port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}: W\T“ par: XC
out buffered port:22 p_sclk = XS1_PORT_1C; E LOOPS
out buffered port:32 p_mosi = XS1_PORT_1D; MULT\PL

clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1s_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;
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port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}: W\T“ par: XC
out buffered port:22 p_sclk = XS1_PORT_1C; E LOOPS
out buffered port:32 p_mosi = XS1_PORT_1D; MULT\PL

clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1s_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;
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port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; W\TH ar: Xc
out buffered port:22 p_sclk XS1_PORT_1C; LE LOOPS
XS1_PORT_1D; MULT\

out buffered port:32 p_mosi
clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1is_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;
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port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; W\TH ar: Xc
out buffered port:22 p_sclk XS1_PORT_1C; LE LOOPS
XS1_PORT_1D; MULT\

out buffered port:32 p_mosi
clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1is_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;
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port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;
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port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;
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port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;



port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk XS1_PORT_1C;
out buffered port:32 p_mosi XS1_PORT_1D;

(£ 1LOOPS WITH par: X

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;
adc_lib_if 1_adc_1ib[NUM_ADC];

heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if i_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);
on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);
on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;
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port but_left
‘port but_center
port but_right
out buffered port:
out port

out buffered port:
out buffered port:
clock

int main() {
//
chan
chan
//
12c_ext_if
i2c_int_if
adc_acqg_if
adc_lib_if
heat_light_if
heat_if
water_if
radio_if
spi_master_if

= on tile[@]:XS1_PORT_1N;

= on tile[@]:XS1_PORT_10;

= on tile[@]:XS1_PORT_1P;
32 p_miso XS1_PORT_1A;

(B nip £ LOOPS WITH por: X

32 p_mosi XS1_PORT_1D;
clk_spi = XS1_CLKBLK_1;

c_1is_channel

c_buts[NUM_BUTTONS];

c_ana;

i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
1_12c_ext[NUM_I2C_EX];

i_i2c_int[NUM_I2C_IN];

i_adc_acq;

1_adc_1ib[NUM_ADC];

i_heat_1ight[NUM_HEAT_LIGHT];

i_heat[NUM_HEAT_CTRL];

1_water;

emiti; THIS IS PARALLEL

par {<€—

on tile[@]:

on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]
on tile[@]
on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]

on tile[@]
on tile[@]

}

return 0;

installExceptionHandler();
.core[@]: I2C_In_Task (i_i2c_int);
.core[4]: I2C_Ex_Task (1_12c_ext);
Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

.core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);

.core[5]: Temp_Water_Task (i_water, i_heat[1]);

.core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);

.core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);

.core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);

.core[5]: Port_HL_Task (i_heat_light);

.core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib

.core[6]: Radio_Task (i_radio, i_spi);

.core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,

p_ss, 1, clk_spi); // XMOS 1ib
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port but_left
‘port but_center
port but_right
out buffered port:
out port

out buffered port:
out buffered port:
clock

int main() {
//
chan
chan
//
12c_ext_if
i2c_int_if
adc_acqg_if
adc_lib_if
heat_light_if
heat_if
water_if
radio_if
spi_master_if

= on tile[@]:XS1_PORT_1N;

= on tile[@]:XS1_PORT_10;

= on tile[@]:XS1_PORT_1P;
32 p_miso XS1_PORT_1A;

s MULTIPLE L0OPS WITH par: X

clk_spi = XS1_CLKBLK_1;

c_1is_channel
c_buts[NUM_BUTTONS];

c_ana;

i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
1_12c_ext[NUM_I2C_EX];
i_i2c_int[NUM_I2C_IN];
i_adc_acq;
1_adc_1ib[NUM_ADC];
i_heat_1ight[NUM_HEAT_LIGHT];
i_heat[NUM_HEAT_CTRL];
1_water;

emiti; THIS IS PARALLEL

par {<4—

on tile[@]:

on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]
on tile[@]
on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]

on tile[@]
on tile[@]

}

return 0;

installExceptionHandler();
.core[@]: I2C_In_Task (i_i2c_int);
.core[4]: I2C_Ex_Task (1_12c_ext);
Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

.core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);

.core[5]: Temp_Water_Task (i_water, i_heat[1]);

.core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);

.core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);

.core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);

.core[5]: Port_HL_Task (i_heat_light);

.core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib

.core[6]: Radio_Task (i_radio, i_spi);

.core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,

p_ss, 1, clk_spi); // XMOS 1ib

XC from my aquarium controller and xTIMEcomposer
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[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any

» Concurrency TS futures are not widely implemented
TS - Technical Specification


https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf
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The reason channels and goroutines are built into the language.  Mioa socommmsrums

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

select {
case vl := <-cl:
fmt.Printf("received %v from cl\n", vl)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", vl)
case c3 <- 23:

fmt.Printf("sent %v to c3\n", 23)
default:

fmt.Printf("no one was ready to communicate\n")
}
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The select statement provides another way to handle multiple channels.
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e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

select {
case vl := <-cl:
fmt.Printf("received %v from cl\n", vl)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", vl)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

deTaULL: qummmme e Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}
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The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.
e A default clause, if present, executes immediately if no channel is ready.

select , ives
casé vl = <-cl: A1ternat1ve iei%ch
fmt.Printf("received %v from cl\n", vl) w, oK = <-ch
case v2 := <-cC2: w, oK _ <-ch
fmt.Printf("received %v from c2\n", v1) var x» O 7 ch
case c3 <- 23: var X, K

fmt.Printf("sent %v to c3\n", 23)

default: .. Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}
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A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Rob Pike

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.
e A default clause, if present, executes immediately if no channel is ready.

select , ives
casé vl = <-cl: A1ternat1ve iei%ch
fmt.Printf("received %v from cl\n", vl) w, oK = <-ch
case v2 := <-cC2: w, oK _ <-ch
fmt.Printf("received %v from c2\n", v1) var x» O 7 ch
case c3 <- 23: var X, K

fmt.Printf("sent %v to c3\n", 23)

default: Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n" )
}
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» Some road bridges have access control
» Waiting ships and waiting cars are «orthogonal» (?)
» Some bridges are for cars, some for trains
» Some bridges are tall enough to let most ships through
» Which part of this drawing might most resemble a
CSP type system? (Even if CSPm may model everything)
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» Now it is protected!
» Doing something else

» | guess that this is the most important page in this lecture!
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A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning

» The lock keeper operates it

» It has «states»

» Channels, buffers, queues, pipes also have their semantics
» Simplest CSP chan: synchronous, one-way, no buffer
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A:run all the time!

first: have result!

B: dance - busy!

second: ready!

wait/sleep/block
send > receive

more to do? synchronous
unbutfered thanks! paint
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\
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\
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\ /
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§ Blocking if first
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=
CHAN IN (Chanl CPtr->Data) ;
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PROC B
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SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

One-to-one
Many-to-one if channel array
\ Queue only used as ready queue (and timer events)
Local A

CHAN OUT (Chanl No data

No data

Direct memcpy

Local B Some scheduling mechanism

éuarded message

\ / control

CSP_CHAN
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PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data
» Goroutine will block until ready (or get an «ok/err» if you need to)

» But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

» Buffer full when no more memory: restart!{®

» Therefore:
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func Server(in <-chan int, out chan<- int) {
value := 0 // Declaration and assignment
valid := false // ——"—
for {

// If we have no value, then don't attempt
// to send it on the out channel:
if !valid {
outc = nil // Makes input alone in select
setect {
case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
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case outc <- value: // SEND?
valid = false
}
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Go “simulates” a guard if a communication componentis nil

Referred in http://www.teigfam.net/oyvind/pub/pub_details.htmI#XCHAN

The Go Playground m

func Server(in <-chan int, out chan<- int) {
value := 0 // Declaration and assignment
valid := false // ——"—
for {

// If we have no value, then don't attempt
// to send it on the out channel:
if !valid {
outc = nil // Makes input alone in select

select {

case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
valid = true

case outc <- value: // SEND?
valid = false

¥


http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN
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2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
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2 6 select {
B 7 case 1.fQO): {
8 .
9 } break;
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GUARDS

XC has guards built into the language.Plus interface

https://www.xmos.com/published/xmos-programming-guide

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
..
2 6 select {
B 7 case 1.fQO): {
8 e
9 } break;
2 10 case (e == 1) = 1.g0): {
11 e
12 } break;
2 13 }

Implemented with channels, states and/or locks by the XC compiler

| use this at home:


https://www.xmos.com/published/xmos-programming-guide
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typedef interface startkit_adc_if { interface startkit_adc_if i_analogue;
[ [guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);
[[notification]] slave void complete(void);

} startkit_adc_if;
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KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if { interface startkit_adc_if i_analogue;
[ [guarded]] void trigger(void);

[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit adc if; .
- - interface

i_analogue.trigger();
[ [guarded]]

~ N\ . i_analogue.complete(); .
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i [[notification]] :
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KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {
[ [guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit_adc_if;

interface startkit_adc_if i_analogue;

: i_analogue.trigger(); void therm_task
[ [guarded]] ; /] ...
; while(1l) {
select {
: : case wait_for_ button => c_button_2 :> int x: {
4 cerver N\ . i_analogue.complete(); 4 client N\ // ...
§ [[notification]] § i_analogue.trigger();
....... ?.".".".""."."."."."."."."."?";> breaks }
adc_task ” > therm_task cas<;./wait_for_adc => i_analogue.complete(): {
| i_analogue.read(adc_vals.x) | if (i_analogue.read(adc_vals.x)) {
\[[ombinablel] | HEOReame et e s ([ [combinablel]) | [l Use it
reak;
}
}
}

}
Drawing by @Qyvind Teig
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KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {

[ [guarded] ]

void trigger(void);

[[clears notification]] int read(unsigned short

adc_val[4]);

[[notification]]
} startkit_adc_if;

slave void complete(void);

interface

i_analogue.trigger();
[ [guarded]]

-

\

i_analogue.complete();

/r client \\

server E [[notification]] E
....... .E..........................................g..)
adc_task 2 : ,| therm_task
Ei_analogue.read(adc_vals.x)é
. [[clears notification]] : .
[[combinable] ] - [ [combinable]]

Also has traditional chan (untyped)

Guaranteed deterministic real-time response

interface startkit_adc_if i_analogue;

[ [combinable] ]
void therm_task
/1l ...
while (1) {
select {
case wait_for_ button => c_button_2 :> int x: {

}

// ...
i_analogue.trigger();
break; }

case wait_for_adc => i_analogue.complete(): {

}

// ...

if (i_analogue.read(adc_vals.x)) {

// Use it
} break;

Drawing by @Qyvind Teig
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KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {
[ [guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit_adc_if;

interface startkit_adc_if i_analogue;

: i_analogue.trigger(); void therm_task
[[guarded]] /1l ...
; while(1) {
select {
: 5 case wait_for_ button => c_button_2 :> int x: {
4 server ) . i_amalogue.complete(); 4 client ) (/ S .
; [[notification]] ; i_analogue.trigger();
IIIIIII !EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEII> break; }
adc task therm task case wait_for_adc => i_analogue.complete(): {
- S —> - /...
. 1_analogue.read(adc_vals.x) if (i_analogue.read(adc_vals.x)) {
. i [[clears notification]] : . .
[ [combinable]] - [ [combinable]] // Use it
\_ Y, S S ) } break;
}
}
Also has traditional chan (untyped) }

}

Guaranteed deterministic real-time response Drawing by Qyvind Teig

This pattern is understood by the compiler and it is deadlock free
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occam, too. Butitdidnthave interface

https://en.wikipedia.org/wiki/Occam_(programming_language)

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

» Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)
» Any way gives the wanted effect of «protection»


https://en.wikipedia.org/wiki/Occam_(programming_language)
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PyCSP https://qithub.com/runefribor csp/wiki/Getting_Started With PyCSP 2

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])
» TimeoutGuard(seconds=<s>, action=[optional])

» SkipGuard(action=[optional])

More about «fairness»:


https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2
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Clojure core.async

https://www.infog.com/presentations/clojure-core-async

» A channels API for Clojure

» @Java virtual machine and the Common Language Runtime
» and ClojureScript

» JavaScript -> .NET
» Real threads. real blocking

» Do watch it! The best to understand what this is all about!


https://www.infoq.com/presentations/clojure-core-async
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request  numbytes  out

(-1)
(=1}

prev.command =
this. . command :=
—=Fkkk
WHILE TRUE
SEQ
—4{4{{ Receive token from input
bytez.in ? numb. received [buffer FROM i0f buffer FOR numb.received]

alxf

Address:  [0x008b6113

008B61F8 09 00
008B61FA 00 00

¥C /77777 Received token from input =
nunb.received.total = numb.received.total + numb.received

—Fkk

1 &l &
.o

00BB61FC
D0BB61FE
008B6200
008B6202
008B6204
D08B6206
008B6208
008B620A

o

1«

——{{{ Declarations

INT numb. required:

BOOL =endiAs Envelope; —— ie, Send complete array once
BOOL zeroSizedCountedirravPairSent |

=

A
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l & Scheduler
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==}t
WHILE TRUE

SEQ

—{{{
byte=s . 1

I

Addess:  [0+008b6118

D08B61F8
008B61FA
00BB61FC
D0BB61FE
008B6200
008B6202
008B6204
008B6206

1. -
o

—Fkk
sokdld

o
SEQ

request  numbytes  out

prev . command
this . command :

¥C /77777 Received token from input
nunb.received. total

| NUMBE.CHMD —— Start the =s=tate machine <r\
E Q

-1)
-1)

Receive token from input
n ? numb, received [buffer FROM i0f buffer FOR numb.received]

numnb.received.total + numb.received

Declarations

INT numb. reguired:
BOOL =endis Envelope;
BOOL zeroSizedCountedirravPairSent |

—— 1e, Send complete array once

008B6208 00 00 .. | SRR L il ~|

oosBe20a 00 oo . = |[4] 5l

- Contest: | P_Tokenizer_9B2(SF_P_Tokenizer 9627 = L L —
Home S | ..l OO i S S B

s DEO O B0

s s Id 8 8 6 L T T T PP PP PP UXU U D U U D U 1 B T P T PP PR
; ,]T Stresm Output 867 0x0000000a
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(- - B m syst files

B4 ClassView

| f

(E] FileView

;Aggg

Address:

[0x008b61E

008BE1FS
008B61FA
Q08BE1FC
0D08B61FE
008B6200
008Be202
00D8Be204
008B6206A
008BR20S
008B620A

-
. d

5l

Ll

request  numbytes  out

prev, command

this. command :

—kk}

WHILE TRUE
SEQ

| HNUMB.CMD —— Start the =state machine /(\
= =1) <$>
= (-1)

——{{{ Receive token from input
bytes.in ? numb.received |, [buffer FROM i0f buffer FOR numb.received]

¥C /77777 Received token from input

numnb.received. total = numb.received.total + numb.received
—kk}

——{{{ Declarations

INT numb. reguired:

BOOL =endiAs Envelope; —— ie, Send complete array once

BOOL zeroSizedCountedirravPairSent |

——FFr

SEQ

L L That

x|
K

antékt::’l P_Tokenizer_962(SF_P_Tokenizer_962 *)

Yalue

s

1980

_H _Header

e R
R 11
BV R 11111 F S ———

1995: 0CCAM TO C ON SIGNAL PROCESSOR
(MIP-CALCULATOR: NK-200) & NTH DIPLOMA
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Address:  [0x008b613
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008BelFA 00 00 .24
008Be1FC 00 0O ..
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0o08Be200 00 00
0osBez202 00 00
0os8Be204 00 00O
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oogBe208 00 00O ..
008B6204 00 00 . =]

el

request  numbytes  out

prev. command

this. command :

—kk}

WHILE TRUE
SEQ

(-1)
(=1}

——{{{ Receive token from input

bytez.in ? numb, received ..

¥C /77777 Received token from input

nunb.received.total = numb.received.total + numb.received

—Fkk

——{{{ Declarations
INT numb. reguired:

BOOL =endAs,

Envelope:

BOOL zeroSizedCountedirravPairSent |

e i
SEQ

L L That

| HNUMB.CMD —— Start the =state machine

[buffer FROM i0f buffer FOR numb.received]

—— 1ie, Send complete array once

Debugged
occam
linesin C
directly in
Microsoft
Visual C++

A

2 Content [P_Tokenizer_962(5F_P_Tokenizer 9627 =

Yalue -
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» Will probably keep C for a long time! We also see C++
» Project managers need to learn about the «Go potential»
» Don’t take over their toolset without adding your knowledge
» Like channels and «tight» processes (that protect)
» Even if it will be hard to C/C++ schedulers
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The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!
» The red hlocking is blocking of others that need to proceed
according to specification (too few threads?)
» The black blocking is deadlock, pathological, system freeze
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IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

» Channels and conditional choice (select, alt)
» In proper processes, concurrency solved

» Connecting channels to event loops and callbacks when
that’s what you have in a library (like in Closure core.async,
see Further reading)
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«CHANSCHED»: CSP ON AVR XMEGA

ChanSched: finally in one of the controllers synchronous
channels on top of no other runtime («naked»)
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«CHANSCHED»: CSP ON AVR XMEGA

» ChanSched: finally in one of the controllers synchronous
channels on top of no other runtime («naked»)
» The runtime was more visible to the application code than |
thought (next page)
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HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

N

N

void P_Standard(CHAN CSP )(void)
{

CP_a CP = (CP_a)g _ThisExtPtr; //
switch (CP->State) //
//
//

case ST_INIT: {/*Init*/ break;}

case ST IN:

A
* CHAN_IN(G_CHAN IN,CP->Chan_vall);
CP->State = ST APPL1;
break;
}
case ST _APPLl:
{
// Process vall
CP->State = ST_OUT;
break;
}
case ST OUT:
{,

CP >State = ST IN,
break;

}

Sync chan comm needs states

void P_Extended_(ChanSched) (void) :
{

Application CP_a CP = (CP_a)g ThisExtPtr; // Application
and ‘___/j_}gig_hggg ______________ // state only
communication +____while (TRUE) ¥

state {

switch (CP->State)

{
case ST MAIN:

.......................... il

CHAN IN(G_CHAN IN,CP->Chan val2); .

-----------------------------------------------------------------

// Process val2

CP->State = ST MAIN, // opt10n1
break;

Synchronisation points no visible state
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SAME CODE IN A LIBRARY AND OCCAM

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
int val3; WHILE TRUE
for(;;) INT val4:
{ SEQ
ChanInInt (in, &val3); in ? val4
// Process val3 -- Process val4
ChanOutInt (out, val3); out ! val4
}

}
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ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tick);
SET REPTIMER (CHAN REPTIMER, ADC TIME_TICKS)
CHAN OUT (CHAN DATA 0, Data 0); // first output
while (TRUE)

{
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EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Tlmeout Tlck)
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)

{
ALT () ; // this is the needed ”PRI_ALT”

ALT EGGREPTIMER IN (CHAN EGGTIMER) ;

ALT EGGREPTIMER IN (CHAN REPTIMER) ;

ALT SIGNAL CHAN IN (CHAN SIGNAL AD READY);

ALT CHAN IN (CHAN DATA 2, Data 2);

ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;

ALT END() ;
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ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
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{

Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tick);
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)
{
ALT () ; // this is the needed ”PRI_ALT”
ALT EGGREPTIMER IN (CHAN EGGTIMER) ;
ALT EGGREPTIMER IN (CHAN REPTIMER) ;
ALT SIGNAL CHAN IN (CHAN SIGNAL AD READY);

ALT CHAN IN (CHAN DATA 2, Data 2);
ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;
ALT END()

switch (g _ThisChannellId)
{
. process the guard that has been taken, e.g. CHAN DATA 2
CHAN OUT (CHAN DATA 0, Data 0);

};



EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

http://www.teigfam.net/oyvind/pub/pub_details.htmI|#NewALT

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tlck)
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)
{
ALT () ; // this is the needed ”PRI_ALT”
ALT EGGREPTIMER IN (CHAN_EGGTIMER);
ALT EGGREPTIMER IN (CHAN_BEPTIMER);
ALT SIGNAL CHAN IN (CHAN_SIGNAL;AD_READY);
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15. ALT CHAN IN (CHAN DATA 2, Data 2);

16. ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;

17. ALT END()

18. switch (g _ThisChannellId)

19. {

20. .. process the guard that has been taken, e.g. CHAN DATA 2

21. CHAN OUT (CHAN DATA 0, Data 0);

22. };
23. }
24. }
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» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop

» Always one side connected

» No oscillations

» Keeps track of the sanity and possibilities of each side
» Switches over in milliseconds when needed

» Formal model gave us roles and protocol elements
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IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)
» At «session layer» (interface with client, server etc.)

» At application layer (talking with another thread’s
application layer)

» Keeping local state as consistent as possible!

» Avoiding, to receive (and send) messages
that must be handled «later»
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