THINKING ABOUT IT:
CHANNELS MORE THAN CONNECT THREADS

THEY PROTECT THEM

LECTURE BY @YVIND TEIG, SIV. ING. NTH (1975

Version of 1. Feb. 2018 (2)

LECTURE BY @YVIND TEIG, SIV. ING. NTH (1975
AUTRONICA @ EMBEDDED SYSTEMS

Version of 1. Feb. 2018 (2)

LECTURE BY @YVIND TEIG, SIV. ING. NTH (1975
AUTRONICA @ EMBEDDED SYSTEMS (1976-2017

Version of 1. Feb. 2018 (2)

LECTURE BY @YVIND TEIG, SIV. ING. NTH (1975

AUTRONICA @ EMBEDDED SYSTEMS (1976-2017
BLOGGING ABOUT CONCURRENCY ETC. (NOW

Version of 1. Feb. 2018 (2)

LECTURE BY @YVIND TEIG, SIV. ING. NTH (1975

AUTRONICA @ EMBEDDED SYSTEMS (1976-2017
BLOGGING ABOUT CONCURRENCY ETC. (NOW

INVITED SPEAKER, 1. FEB. 2018 AT
NTNU, TTK4145 SANNTIDSPROGRAMMERING (REAL-TIME PROGRAMMING)

Version of 1. Feb. 2018 (2)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

FROM HARD MICROSECONDS TO SPEEDY YEARS

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

FROM HARD MICROSECONDS TO SPEEDY YEARS g

INVITED SPEAKER, 26. APRIL 2016 AT
NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

sl ER:

AND SECURITY

FROM HARD MICROSECONDS TO SPEEDY YEARS puuas

SENIOR DEVELOPMENT ENGINEER, AUTRONICA PART OF UTC SINCE 2005

INVITED SPEAKER, 26. APRIL 2016 AT |:| RE DETECTION SINCE 1957

NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

HUTRONIGRS

D SECURITY

FROM HARD MICROSECONDS TO SPEEDY YEARS s

2005

SENIOR DEVELOPMENT ENGINEER, AUTRONICA PART OF UTC SINCE 2

INVITED SPEAKER, 26. APRIL 2016 AT FIRE DETECTION SINCE 1957

NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

Application CSP processes

31
Channels
Application SDL processes |
I
Asynch : Sys. Asynch . Sys.
messages Timers i Processes messages Timers P Processes
Functions communicating with interrupt Functions communicating with interrupt
Interrupt handlers, buffers Interrupt handlers, buffers
SDL CSP

» FSM scheduler: Most of our controllers use this
asynchronous SDL-based scheduler
» CHAN_CSP: However: in two of the controller there's

synchronous channels on top of it

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

URIEINIER:

D SECURITY
FROM HARD MICROSECONDS TO SPEEDY YEARS

SENIOR DEVELOPMENT ENGINEER, AUTRONICA PART OF UTC SINCE 2005

INVITED SPEAKER, 26. APRIL 2016 AT FIRE DETECTION SINCE 1957

NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

Application CSP processes

31
Channels
Application SDL processes |
I
Asynch : Sys. Asynch . Sys.
messages Timers i Processes messages Timers P Processes
Functions communicating with interrupt Functions communicating with interrupt Mic_o@sggsgz\

Interrupt handlers, buffers
SDL

FAREIR o
Part ofm ;;rocess/data flow diagram

» FSM scheduler: Most of our controller
asynchronous SDL-based scheduler

» CHAN_CSP: However: in two of the cc - chronous
h h | fi - e of the controllers synCiz=ms
syncnronous channeis on tOp or It Sched: finally in on («naked»)
» Chan f no other runtime n code than |

channels on top ©
y The runtime was more

thought (\ater)

visible to the applicatio

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

‘“~! ICURITY

BYVIND TE
SENIOR DEVELOPMENT ENGINEER, AUTRONICA | PART OF UTC SINCE 2005

INVITED SPEAKER, 26. APRIL 2016 AT FIRE DETECHUN SINCE 1957

NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

FROM HARD MICROSECONDS TO SPEEDY YEARS

Application CSP processes

31 ALL THIS RUNS IN AN AUTRONICA «DUAL SAFETY» COMPONENT 23
Channels
Application SDL processes : m
«SAFE RETURN TO PORT> (IMO) OR JUST EXTRA SAFETY i
m::f;;:s Timers ﬂs"):r Processes ml:g:;';s Timers “s'r':r Processes Disney Dream (201 1)
Functions communicating with interrupt Functions communicating with interrupt

Interrupt handlers, buffers

SDL

BRI |
o 2 . Rt : !
Par:of process/data flow diagram

» FSM scheduler: Most of our controllelgum —
asynchronous SDL-based scheduler
» CHAN_CSP: However: in two of the cc

synchronous channels on top of it ~Chansched: finally in

sy ous
one of the controllers nchron

me («naked»)

o other runti

|s on top ofn lication €O
channe < more visible to the app

y The runtime wa ; #2353255)

thought (\ater)

de than | Disney Fantasy (201 2)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

NH@E}:

e — E AND SECURITY
FROM HARD MICROSECONDS TO SPEEDY YEARS HEEENEESES
SENIOR DEVELOPMENT ENGINEER, AUTRONICA PART OF UTC SINCE 2005

INVITED SPEAKER, 26. APRIL 2016 AT
NTNU, TTK&145 SANNTIDSPROGRAMMERING FIRE DETECTIUN SINCE 1957
(REAL-TIME PROGRAMMING)

Application CSP processes

31 ALL THIS RUNS IN AN AUTRONICA «DUAL SAFETY» COMPONENT 23
Apolication SDL Channels
pplication SDL processes | o
|
«SAFE RETURN TO PORT> (IMO) OR JUST EXTRA SAFETY B
m::i:l;:s Timers “S':';r Processes ml:g:;:';s Timers “s'r':r Processes Disney Dream (201 1) -

H iy b ' varineTraffic.com
Functions communicating with interrupt Functions communicating with interrupt - .m g et vnm
EY
Interrupt handlers, buffers Interrupt handlers, buffers w st
SDL CSP Lo

SNEY FANTAS
S——

o) (@) hssllalA ° < an
s ANTECY - Ve

» FSM scheduler: Most of our controllers use this
asynchronous SDL-based scheduler

» CHAN_CSP: However: in two of the controller there’s
synchronous channels on top of it

Disney Fantasy (201 2)

AutroKeeper: patent 329859 in Norway,
PCT/NQ2009/000319 international (granted as #2353255)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

www.teigfam.net/oyvind/pub/pub.html

‘“~! '\vURU'ﬂ'V

2005

FROM HARD MICROSECONDS TO SPEEDY YEARS St
SENIOR DEVELOPMENT ENGINEER, AUTRONICA PART OF UTC SINC

INVITED SPEAKER, 26. APRIL 2016 AT FIRE DETECHUN SINCE 1957

NTNU, TTK&145 SANNTIDSPROGRAMMERING
(REAL-TIME PROGRAMMING)

Application CSP processes

31 ALL THIS RUNS IN AN AUTRONICA «DUAL SAFETY» COMPONENT 53
Channels
Application SDL processes | m
I
«SAFE RETURN TO PORT> (IM0O) OR JUST EXTRA SAFETY AR
Asynch : Sys. Asynch . Sys.
messages TS |- timer Frotssess messages Timers | timer FIOCERES Disney Dream (201 1) -
Functions communicating with interrupt Functions communicating with interrupt R ﬂ. . — uarneTraffle o
‘ r’:-ﬂ —t DISNEY DREAM
Interrupt handlers, buffers Interrupt handlers, buffers photos:
oL csp R
‘ f—@? | otae. _mﬁww«» r
_a; ,msnzv FANTASY
» FSM scheduler: Most of our controllers use this
asynchronous SDL-based scheduler
» CHAN_CSP: However: in two of the controller there's
synchronous channels on top of it e

Disney Fantasy (2012)

AutroKeeper: patent 329859 in Norway,
PCT/NQ2009/000319 international (granted as #2353255)

http://www.teigfam.net/oyvind/pub/pub.html

THIS LECTURE

GOAL

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?

» Why are they more than mere communication channels?

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?
» Why are they more than mere communication channels?

» What problems do they offer a resolution to?

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?
» Why are they more than mere communication channels?
» What problems do they offer a resolution to?

» A little about myself..

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?

» Why are they more than mere communication channels?
» What problems do they offer a resolution to?

» A little about myself..

» ..and my experience over 40+ years in industry

THIS LECTURE

GOAL

» What are channels (and XC «interface»)?

» Why are they more than mere communication channels?
» What problems do they offer a resolution to?

» A little about myself..

» ..and my experience over 40+ years in industry

» (btw: This lecture is on my home page (ref. at the end))

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

» «Sketch» is a «project»

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

» «Sketch» is a «project»

» Top level: .ino-files (not main.c)

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

» «Sketch» is a «project»
» Top level: .ino-files (not main.c)

» First for Atmel AVR processors

ARDUINO IDE %

ARDUINO

ARDUINO IDE BASICS

» «Sketch» is a «project»
» Top level: .ino-files (not main.c)

» First for Atmel AVR processors

» | have played with Arduino SAMD Boards
(32-bits ARM Cortex-MO0O+)

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE NEEDED

sketch_jan09a | Arduino 1.8.5

sketch_jan09a

Sketch uses 9504 bytes (3%) of program storage space. Maximum is 262144 bytes.

Adafruit Feather MO on /dev/cu.usbmodem1431

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE NEEDED

sketch_jan09a | Arduino 1.8.5

sketch_jan09a

1Epoid setup() {
2 // put your setup code here, to run once:

3
4 %
5

Sketch uses 9504 bytes (3%) of program storage space. Maximum is 262144 bytes.

Adafruit Feather MO on /dev/cu.usbmodem1431

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE NEEDED

sketch_jan09a | Arduino 1.8.5

sketch_jan09a

1Epoid setup() {
2 // put your setup code here, to run once:
3

4}
5

6Evoid loop() {
7 // put your main code here, to run repeatedly:

8
9 %

Sketch uses 9504 bytes (3%) of program storage space. Maximum is 262144 bytes.

Adafruit Feather MO on /dev/cu.usbmodem1431

ARDUINO IDE %

ARDUINO

BARE STANDARD CODE NEEDED

sketch_jan09a | Arduino 1.8.5

sketch_jan09a

1Epoid setup() {

2 // put your setup code here, to run once:
3

4 1}

5

6Evoid loop() {
7 // put your main code here, to run repeatedly:

8
9 %

Sketch uses 9504 bytes (3%) of program storage space. Maximum is 262144 bytes.

Adafruit Feather MO on /dev/cu.usbmodem1431

ARDUINO IDE %

ARDUINO
https://www.arduino.cc/en/Tutorial/BareMinimum

BARE STANDARD CODE NEEDED

sketch_jan09a | Arduino 1.8.5

sketch_jan09a

1Epoid setup() {
2 // put your setup code here, to run once:
3

4}
5

6Evoid loop() {
7 // put your main code here, to run repeatedly:

8
9 %

Sketch uses 9504 bytes (3%) of program storage space. Maximum is 262144 bytes.

Adafruit Feather MO on /dev/cu.usbmodem1431

https://www.arduino.cc/en/Tutorial/BareMinimum

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{

setup();

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{

setup();
for (55) {

¥

return 0;

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{

setup();
for (55) {
loop();

¥

return 0;

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{

setup();
for (55) {

loop();
if (serialEventRun) serialEventRun();

¥

return 0;

ARDUINO IDE %

ARDUINO

BARE MINIMUM CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{
init();
initVariant();

#if defined(USBCON)
USBDevice.attach();

#endif

setup();
for (55) {

loop();
if (serialEventRun) serialEventRun();

¥

return 0;

ARDUINO IDE %

ARDUINO

BARE STANDARD CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{
init();
initVariant();

#if defined(USBCON)
USBDevice.attach();

#endif

setup();
for (55) {

loop();
if (serialEventRun) serialEventRun();

¥

return 0;

ARDUINO IDE %

ARDUINO
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

BARE STANDARD CODE CALLED

// main.cpp - Main loop for Arduino sketches

#include <Arduino.h>

int main(void)

{
init();
initVariant();

#if defined(USBCON)
USBDevice.attach();

#endif

setup();
for (55) {

loop();
if (serialEventRun) serialEventRun();

¥

return 0;

https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

ARDUINO IDE %

ARDUINO

MULTIPLE LOOPS?

ARDUINO IDE %

ARDUINO

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

ARDUINO IDE %

ARDUINO

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

» «As the others have stated, no you can't have multiple loop
functions»

ARDUINO IDE %

ARDUINO

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

» «As the others have stated, no you can't have multiple loop
functions»

» «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

ARDUINO IDE %

ARDUINO

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

» «As the others have stated, no you can't have multiple loop
functions»

» «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

» = Concurrency

ARDUINO IDE %

ARDUINO

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

MULTIPLE LOOPS?

» «l have a problem. | want to make a car with a motor, front lights
and rear lights. | want to run them at the same time but in
different loops»

» «As the others have stated, no you can't have multiple loop
functions»

» «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

» = Concurrency

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops

» LED loops do individual blinking

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops

» LED loops do individual blinking

» No general mechanism for communication

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

» | once a system like this, it took a person a year to fix the mess!

This was between interrupts (more later) and «main» and it was written in
assembly

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

» | once a system like this, it took a person a year to fix the mess!

This was between interrupts (more later) and «main» and it was written in
assembly

» How to send results away?

ARDUINO IDE %

ARDUINO

BUT «BLINKING TWO LEDS VIA MOTOR> IS NOT ENOUGH!

» Motor loop sets off two LED loops
» LED loops do individual blinking
» No general mechanism for communication

» No scheme to wait for «resources». So it's busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

» | once a system like this, it took a person a year to fix the mess!
This was between interrupts (more later) and «main» and it was written in
assembly

» How to send results away?

» It's a start, it works here, but it's not a general problem to design a scheduler by

ARDUINO IDE %

ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

ARDUINO IDE %

ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

ARDUINO IDE %

ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

©,0,

ARDUINO IDE ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

©,0,

ARDUINO IDE ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

» As | see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

©,0,

ARDUINO IDE ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

» As | see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

» Beware of «toy» schedulers!

ARDUINO IDE %

ARDUINO

FINDING SCHEDULERS OR RUNTIME SYSTEMS

» In Library Manager, search for «scheduler», «task», «thread»

» Several matches, even one that uses C++11 and the std::thread
class

» However

» As | see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

» Beware of «toy» schedulers!

» But Arduino is not a toy as such!

Z
qoo"'«void loop» ON MY DESK Pt

@Ib
&
@-SPI-BUS bus & cross coupling for short breakout board (9 of 13 pins)
SW pin mapping kept
e
. 1-1 3v3 " ReD
' " 2-2 GND BLACK
‘ : g2 : 3-5 SCK SCK BLUE
: 81 i 5! 4-6 MISO MISO GREEN
: @ 3 i 5-7 MOSI MOSI ORANGE
& > i 6-8 CS #10 YELLOW
LS ®» : 7-3 EN #9 LILAC
o S 8-4 IRQ/GO #6 WHITE
! 9-9 RST #5 GRAY
: Feather
Adafruit
3071
Hoperf Electronics
RFM69HCW
SCK, MOSI, MISO pins Semtech

by board designers, even
printed on the board

SX1231 inside

433 MHz & 1/4 wave = 16,5 cm wire

llustrative laid down

Adafruit

RFM69HCW Transceiver Radio Breakout

433 MHz - RadioFruit connected to an
Adafruit Feather MO basic proto @yvind Teig 01.2018

ARDUINO «void loop» ON MY DESK ARDUINO

@-SPI-BUS bus & cross coupling for short breakout board (9 of 13 pins)
SW pin mapping kept

Pis hera’®
) 1-1 3v3 RED
. & % 2-2 GND BLACK
i 1 P! 3-5 scK SCK BLUE
: B 15! 4-6 MISO MISO GREEN
;@ i 3 5-7 MOSI MOSI ORANGE
& i bi6-8cCs #10 YELLOW
LS ® i 7-3 EN #9 LILAC
: i . O | 8-4 IRQ/GO #6 WHITE
/ 9-9 RST #5 GRAY
: Feather

Y EY ZYTY pYdr9iger € LS

" AGAS A

) 1 Adafruit
: : 3071
+ El'_“,’,,,,“l"._a‘: _ ' = . SO ,_, , 3 ..»"IL ‘ HoDerf EleCtroniCS
?;’1 ggggfﬁr’,gt@ ’ N — D ' &8 I+ o RFM69HCW
SCK, MOSI, MISO pins S - ' T ' Semtech

by board designers, even
printed on the board

SX1231 inside

cs $10 il ® T e - o5l Radio B 433 MHz & 1/4 wave = 16,5 cm wire
ii!QIIN'L‘ #5 0y € ;3(§=12] llustrative laid down
RST ¥ (‘
Q! A A Ao\ Adafruit
B e . . RFM69HCW Transceiver Radio Breakout
' ‘ 433 MHz - RadioFruit connected to an
Adafruit Feather MO basic proto @yvind Teig 01.2018

ARDUINO «void loop» ON MY DESK ARDUINO

RADIO MODULE
434.0 MHZ

@-SPI-BUS bus & cross c¢ uj ling for short breakout board (9 of 13 pins)
SW pin mapping kept

I RG Colour
[LD here
) 1-1 3v3 RED
; v/) 2-2 GND BLACK
e ; . 1 2 3-5 SCK £C¢ BLUE
I k! : 8 {5 4-6 MISO }I30 GREEN
L &5 ;@ 3 ! 5-7 MOSI M CSI ORANGE
f 2 P & ©: 6-8Cs #10 YELLOW
©n & 1 @ 7-3 EN #3 LILAC
{ y S 8-4 IRQ/GO #: WHITE
9 / 9-9 RST # GRAY
<3 : LED $# 3 Feather
.ﬁﬂa =" - - = .
o2 L ‘s Adafruit
p O E : = 3071
W2 : LB , ‘ ; ' ; B
Lt D 2 y Z Pl el :
2o T < = of BV P 51— Hoperf Electronics
> Feather M@ P : g & - : :
SCK, MOSI, MISO pains Semtech

by board designers, even
printed on the board

SX1231 inside

cs) '@ il ® Doy~ s - el nodio e B 433 MHz & 1/4 wave = 16,5 cm wire
ii!QIIN'L‘ #5 o101 5 llustrative laid down
RS : = |
& V5S¢ ~ O\ Adafruit
B N LN NN . . RFM69HCW Transceiver Radio Breakout
' : 433 MHz - RadioFruit connected to an
Adafruit Feather MO basic proto @yvind Teig 01.2018

ARDUINO «void loop» ON MY DESK ARDUINO

RADIO MODULE
434.0 MHZ

@-SPI-BUS bus & cross c¢ uj ling for short breakout board (9 of 13 pins)
SW pin mapping kept

I RG Colour
[LD here
) 1-1 3v3 RED
; v/) 2-2 GND BLACK
e ; . 1 2 3-5 SCK £C¢ BLUE
I k! : 8 {5 4-6 MISO }I30 GREEN
L &5 ;@ 3 ! 5-7 MOSI M CSI ORANGE
f 2 P & ©: 6-8Cs #10 YELLOW
©n & 1 @ 7-3 EN #3 LILAC
{ y S 8-4 IRQ/GO #: WHITE
9 / 9-9 RST # GRAY
<3 : LED $# 3 Feather
.ﬁﬂa =" - - = .
o2 L ‘s Adafruit
p O E : = 3071
W2 : LB , ‘ ; ' ; B
Lt D 2 y Z Pl el :
2o T < = of BV P 51— Hoperf Electronics
> Feather M@ P : g & - : :
SCK, MOSI, MISO pains Semtech

by board designers, even
printed on the board

SX1231 inside

cs) '@ il ® Doy~ s - el nodio e B 433 MHz & 1/4 wave = 16,5 cm wire
ii!QIIN'L‘ #5 o101 5 llustrative laid down
RS : = |
& V5S¢ ~ O\ Adafruit
B N LN NN . . RFM69HCW Transceiver Radio Breakout
' : 433 MHz - RadioFruit connected to an
Adafruit Feather MO basic proto @yvind Teig 01.2018

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

Soo00 = ‘ i

I!Iu

Elﬁlﬂimblbmb
oo o

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD ARDUINO

ARM CORTEX MO

maE8S
-

A AANRIAT 7

3 (}—\'E’b"‘

! PR L e
Pl tondw s s
e e

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARM CORTEXMO = ARM CORTEX MO

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARM CORTEXMO = ARM CORTEX MO

No concurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD XMOS A:RDUI:NO

XM0S 8-CORE ARM CORTEX MO ARM CORTEX MO
XC, C, C++

bl -'ﬂf‘(“'-“x

» \-—

[

4
-
Toes

No concurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

“\.;"" ~ Za

& :
\
. N

2
awn®ReERS

..... (a)le) e} le)le) 8) 0! @I ;

e R E

e 5
o P D=

- - -
P———
....
()".—“?.
- &

- -
--': ‘-____ - o

r
— - W W

- ,:_:4-1?’-'-

Concurrency

XMOS 8-CORE
XC, C, C++

- o

-7 w8 gl

ARM CORTEX MO

ARM CORTEX MO

L o T > B

No concurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

“\.;"" ~ Za

& :
\
. N

2
awn®ReERS

..... (a)le) e} le)le) 8) 0! @I ;

e R E

e 5
o P D=

- - -
P———
....
()".—“?.
- &

- -
--': ‘-____ - o

r
— - W W

- ,:_:4-1?’-'-

Concurrency

XMOS 8-CORE
XC, C, C++

- o

7 g\

MORE LATER

ARM CORTEX MO

ARM CORTEX MO

L o T > B

No concurrency

XMOS [RORO;

ARDUINO

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

XM0S 8-CORE ARM CORTEX MO ARM CORTEX MO
XC, C, C++

.......

e R E

¥

- - -

- P

- o~
........
"..
- -
p«p&"'.’ 3

=

o e o W T U
-5

- "’--' S

Concurrency No concurrency
MORE LATER NEXT: Scheduler

ARDUINO: scheduler AND THREE 1loop () AR::DUINO

ARDUINO: scheduler AND THREE 1loop () AR::DUINO

v = Scheduler
.DS_Store
v [examples
.DS_Store
v [MultipleBlinks
keywords.txt
 library.properties
~ README.adoc
v B src
o Scheduler.cpp
L Scheduler.h

ARDUINO: scheduler AND THREE 1loop () AR::DUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

. .DS_Store

int ledl = 13; v || examples

int led2 = 12; .DS_Store

int led3 = 11; v [MultipleBlinks
. « MultipleBlinks.ino

void setup() { keywords.txt
Serial.begin(9600); _ library.properties

) ~ README.adoc

// Setup the 3 pins as OUTPUT v 1 src
pinMode(ledl, OUTPUT); o Scheduler.cpp
pinMode (led2, OUTPUT); Iischedmerh

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop2);
Scheduler.startLoop(loop3);

ARDUINO: scheduler AND THREE loop ()

©,0,

ARDUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

. .DS_Store

int ledl = 13; v [examples

int led2 = 12; .DS_Store

int led3 = 11; v [MultipleBlinks
. « MultipleBlinks.ino

void setup() { keywords.txt
Serial.begin(9600); _ library.properties

) ~ README.adoc

// Setup the 3 pins as OUTPUT v B sic
pinMode(ledl, OUTPUT); o Scheduler.cpp
pinMode(led2, OUTPUT); Iischedme;h

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop2);
Scheduler.startLoop(loop3);

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control
// to other tasks while waiting and guarantees they get
// executed.

delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

©,0,

ARDUINO: scheduler AND THREE 1loop () ARDUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler
_ .DS_Store
int ledl = 13; v [examples
int led2 = 12; .DS Store
int led3 = 11; v [MultipleBlinks
 MultipleBlinks.ino // Task no.2: blink LED with 0.1 second delay.
void setup() { keywords.txt void loop2() {

digitalWrite(led2, HIGH);
delay(100);
digitalWrite(led2, LOW);
delay(100);

Serial.begin(9600); _ library.properties

p . _ ~ README.adoc
Setup the 3 pins as OUTPUT v B9 SrC

pinMode(ledl, OUTPUT);
i o Scheduler.cpp
pinMode(led2, OUTPUT); }
i L Scheduler.h
pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop2);
Scheduler.startLoop(loop3);

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control
// to other tasks while waiting and guarantees they get
// executed.

delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

ARDUINO: scheduler AND THREE 1loop () AR::DUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

_ .DS_Store
int ledl = 13; v [examples
int led2 = 12; .DS_Store

int led3 = 11; v [MultipleBlinks

« MultipleBlinks.ino

keywords.txt
 library.properties

void setup() {
Serial.begin(9600);

_ README.adoc
// Setup the 3 pins as OUTPUT v B SrC
pinMode(ledl, OUTPUT); 470.5chedubncpp
pinMode(led2, OUTPUT); . Scheduler.h

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop?2);

// Task no.2: blink LED with 0.1 second delay.
void loop2() {

Scheduler.startLoop(loop3);

digitalWrite(led2, HIGH);
delay(100);
digitalWrite(led2, LOW);
delay(100);

// Task no.3: accept commands from Serial port
// '0' turns off LED

// 'l' turns on LED

void loop3() {

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control

// to other tasks while waiting and guarantees they get

// executed.
delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

if (Serial.available()) {

char ¢ = Serial.read();

if (c=='0") {
digitalWrite(led3, LOW);
Serial.println("Led turned off!");

}

if (e=="'1") {
digitalWrite(led3, HIGH);
Serial.println("Led turned on!");

}
}

// IMPORTANT:

// We must call 'yield' at a regular basis to pass
// control to other tasks.

yield();

ARDUINO: scheduler AND THREE loop ()

©,0,

ARDUINO

// Include Scheduler since we want to manage multiple tasks.

#include <Scheduler.h> v = Scheduler

_ .DS_Store
int ledl = 13; v [examples
int led2 = 12; .DS_Store

int led3 = 11; v [MultipleBlinks

« MultipleBlinks.ino

keywords.txt
 library.properties

void setup() {
Serial.begin(9600);

_ README.adoc
// Setup the 3 pins as OUTPUT v B SrC
pinMode(ledl, OUTPUT); 470.5chedubncpp
pinMode(led2, OUTPUT); . Scheduler.h

pinMode(led3, OUTPUT);

// Add "loop2" and "loop3" to scheduling.
// "loop" is always started by default.
Scheduler.startLoop(loop?2);

https://www.arduino.cc/en/Tutorial/MultipleBlinks

https://www.arduino.cc/en/Reference/Scheduler

// Task no.2: blink LED with 0.1 second delay.
void loop2() {

Scheduler.startLoop(loop3);

digitalWrite(led2, HIGH);
delay(100);
digitalWrite(led2, LOW);
delay(100);

// Task no.3: accept commands from Serial port
// '0' turns off LED

// 'l' turns on LED

void loop3() {

// Task no.l: blink LED with 1 second delay.
void loop() {

digitalWrite(ledl, HIGH);

// IMPORTANT:

// When multiple tasks are running 'delay' passes control

// to other tasks while waiting and guarantees they get

// executed.
delay(1000);

digitalWrite(ledl, LOW);
delay(1000);

if (Serial.available()) {

char ¢ = Serial.read();

if (c=='0") {
digitalWrite(led3, LOW);
Serial.println("Led turned off!");

}

if (e=="'1") {
digitalWrite(led3, HIGH);
Serial.println("Led turned on!");

}
}

// IMPORTANT:

// We must call 'yield' at a regular basis to pass
// control to other tasks.

yield();

ARDUINO: scheduler AND THREE 1loop () IS STARTER'S DIY CONCURRENCY

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE THIS

ARDUINO: Sscheduler AND THREE 1loop () IS STARTER'S DIY CONCURRENCY

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE TRIS

ARDUINO: Sscheduler AND THREE 1loop () IS STARTER'S DIY CONCURRENCY

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE TRIS

. JR A

— . e
L conemnis r ey .
In All Trains to St

- -
> |

P e . R A~ ort B % e

op by Hans Steeneken (1979)

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

» Provided this thread only did this job «now» and other threads could do their jobs
independently?

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

» Provided this thread only did this job «now» and other threads could do their jobs
independently?

Driver <
thread —— >

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

» Provided this thread only did this job «now» and other threads could do their jobs
independently?

. Driver +—— =
thread >

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

» Provided this thread only did this job «now» and other threads could do their jobs
independently?

Interrupt _ Driver <
hw & sw thread >

€ oo >

ARDUINO: scheduler AND THREE loop () INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?

» You get a lot of concurrency / real-time with interrupts

» After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

» Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

» However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

» But could one thread («Driver») initialise an interrupt HW over an init «xchannel», and
then sit idly waiting on a return channel for the result?

» Provided this thread only did this job «now» and other threads could do their jobs
independently?

Interrupt _ Driver <
S > hw & sw > thread >

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)
» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
» The XCore multi-core architecture

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
» The XCore multi-core architecture

» adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in
the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». | think their deterministic timing guarantee (by

compiler and tool) may give full control of interrupt latency [3]

CONCURRENCY

[1] https://en.wikipedia.org/wiki/Transputer

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
» The XCore multi-core architecture

» adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in
the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». | think their deterministic timing guarantee (by

compiler and tool) may give full control of interrupt latency [3]

https://en.wikipedia.org/wiki/Transputer

CONCURRENCY

[1] https://en.wikipedia.org/wiki/Transputer
[2] https://en.wikipedia.org/wiki/Parallax_Propeller

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
» The XCore multi-core architecture

» adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in
the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». | think their deterministic timing guarantee (by

compiler and tool) may give full control of interrupt latency [3]

https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

CONCURRENCY

[1] https://en.wikipedia.org/wiki/Transputer
[2] https://en.wikipedia.org/wiki/Parallax_Propeller
[3] https://en.wikipedia.org/wiki/XCore_Architecture

WHAT ABOUT NOT INTERRUPTS?

» Three processors | have come across do not have on board interrupt HW
» With them, dedicated HW may be replaced by dedicated SW
» On the transputer (parallel uP)

» there was one 'event’ line, similar to a conventional processor's interrupt line.
Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

» The Parallax Propeller multi-core chip

» had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
» The XCore multi-core architecture

» adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in
the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». | think their deterministic timing guarantee (by

compiler and tool) may give full control of interrupt latency [3]

https://en.wikipedia.org/wiki/XCore_Architecture
https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

ol INMOS Limited

occam’ 2
Reference
Manual

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

i INMOS Limited

occam’ 2
Reference
Manual

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)
» Was presented here. Is not used in the industry any more,

;i oS Linied
.« o o occam’
but occam-pi is used as a research language Reference

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . i "2
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]

C.AR FOARF SFRIFS EDTOR

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . i "2
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]

» Ada is presented in this course. Has rendezvous

C.AR FOARF SFRIFS EDTOR

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

=8 occam’ 2

but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR FOARF SFRIFS EDTOR

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

=8 occam’ 2

but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR FOARF SFRIFS EDTOR

» go is presented in this course. Has channels

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR FOARF SFRIFS EDTOR

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR FOARF SFRIFS EDTOR

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide

» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors
» | will show you some here. Has channels and interfaces

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors
» | will show you some here. Has channels and interfaces
» Also based on CSP

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTN U 7 [1] http://wotug.cs.unlv.edu/generate-program.php?id=1

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR HOARF SFRIFS EDTOR

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors
» | will show you some here. Has channels and interfaces
» Also based on CSP

http://wotug.cs.unlv.edu/generate-program.php?id=1

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

[1] http://wotug.cs.unlv.edu/generate-program.php?id=1
AT NTN U ? [2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR HOARF SFRIES EDTOR

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors
» | will show you some here. Has channels and interfaces
» Also based on CSP

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

7 [1] http://wotug.cs.unlv.edu/generate-program.php?id=1
AT NTN U - [2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

[3] https://swtch.com/~rsc/thread/

» occam has (had) channels. Based on CSP (more later)

» Was presented here. Is not used in the industry any more, oS i

. . :—:if)
but occam-pi is used as a research language Reference

» «Unifying Concurrent Programming and Formal
Verification within One Language» by Welch et.al. [1]
» Ada is presented in this course. Has rendezvous
» Concurrency-part also based on CSP (and more) [2]

C.AR HOARF SFRIES EDTOR

» go is presented in this course. Has channels
» Also concurrency based on CSP. See next slide
» Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still
impressing [3]
» XC by XMOS on XMQOS multi-core processors
» | will show you some here. Has channels and interfaces
» Also based on CSP

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada
https://swtch.com/~rsc/thread/

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for
concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==

Communicating Sequential Processes, or

CSP.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==

Communicating Sequential Processes, or

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

Concurrency and multi-threaded
programming have a reputation for
difficulty.

We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Occam and Erlang are two well known
languages that stem from CSP.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to

overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...
barriers. notion of channels as first class objects.

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...
barriers. notion of[channels as first class objects. ==

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

@@@

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

e)) »
m https://golang.org/doc/fag#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
concurrency comes from|Hoare's ==
Communicating Sequential Processes, or

Concurrency and multi-threaded
programming have a reputation for
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

e)) »
m https://golang.org/doc/fag#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
Concurrency and multi-threaded concurrency comes from|Hoare's =
programming have a reputation for Communicating,Seguential Processes, or
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

m S
@ https://golang.org/doc/fag#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
Concurrency and multi-threaded concurrency comes from|Hoare's =
programming have a reputation for Wse _:vue,n,tia_l, or
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of[channels as first class objects. == Pi-calculus

m S
@ https://golang.org/doc/fag#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

«

One of the most successful models for

providing high-level linguistic support for
Concurrency and multi-threaded concurrency comes from|Hoare's =
programming have a reputation for Wse uentlal or
difficulty.

Occam and Erlang are two well known

We believe this is due partly to complex
languages that stem from CSP.

designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory Go's concurrency primitives derive from ...

barriers. notion of|channels as first class objects. = Pi-calculus
|

- ™

v

)
@ | hitps://golang.grg/doc/fag#csp

https://golang.org/doc/faq#csp

SOME IMPORTANT PROPERTIES

SOME IMPORTANT PROPERTIES

CONCURRENT?

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL?

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core

» Parallel: multi-core

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core

» Real-time: meeting deadlines

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines

» XC is closest to having all properties

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines

» XC is closest to having all properties

» since | guess, if it's parallel then it's concurrent

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines
» XC is closest to having all properties
» since | guess, if it's parallel then it's concurrent

» Ada if «Ravenscar profile» (that removes rendezvous!)

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines
» XC is closest to having all properties
» since | guess, if it's parallel then it's concurrent
» Ada if «Ravenscar profile» (that removes rendezvous!)

» Go is «not real-timey

SOME IMPORTANT PROPERTIES

CONCURRENT? ~ PARALLEL? REAL-TIME?

» Concurrent: tasks scheduled on single-core
» Parallel: multi-core
» Real-time: meeting deadlines
» XC is closest to having all properties
» since | guess, if it's parallel then it's concurrent
» Ada if «Ravenscar profile» (that removes rendezvous!)
» Go is «not real-time»

» Occam on many transputers and one transputer;
different properties. Not really relevant any more, or.. yet(?)

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

O © 00 N o o b~ W N -

N A A A A A A A aa a0 =
o ©OW 00 N o o0 A W N -

Jan 2017

Change

«

Programming Language

Java

C

C++
Python

C#
JavaScript
Visual Basic .NET
R

PHP

Perl

Ruby
Swift

Delphi/Object Pascal

Visual Basic

Assembly language

Objective-C
Scratch
MATLAB
Go

PL/SQL

Ratings
14.215 %
11.037 %

5.603 %

4.678 %

3.754 %

3.465 %

3.261 %

2.549 %

2.532 %

2.419 %

2.406 %

2.377 %

2.377 %

2.314 %

2.056 %

1.860 %

1.740 %

1.653 %

1.569 %

1.429 %

Change
-3 %
+1.69%
-1%
+1.21%
-0 %
+0.62%
+0.30%
+0.76%
-0 %
-0 %
-0 %
+0.45%
-0 %
+0.40%
-1%
+0.24%
+0.58%
+0.07%
-1 %
-0 %

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

O ©O© 0o N o o B~ W N -

N A a a a a a0 e
O O 0o N oo o0 A oo NDN -

Jan 2017

Change

K2 2K 2 <€ > > <€ >2» € > < >

Programming Language

Java

C

C++
Python

C#
JavaScript
Visual Basic .NET
R

PHP

Perl

Ruby
Swift

Delphi/Object Pascal

Visual Basic

Assembly language

Objective-C
Scratch
MATLAB
Go

PL/SQL

Ratings
14.215 %
11.037 %

5.603 %

4.678 %

3.754 %

3.465 %

3.261 %

2.549 %

2.532 %

2.419 %

2.406 %

2.377 %

2.377 %

2.314 %

2.056 %

1.860 %

1.740 %

1.653 %

1.569 %

1.429 %

Change
-3 %
+1.69%
-1 %
+1.21%
-0 %
+0.62%
+0.30%
+0.76%
-0 %
-0 %
-0 %
+0.45%
-0 %
+0.40%
-1 %
+0.24%
+0.58%
+0.07%
-1 %
-0 %

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

O ©O© 0o N o o B~ W N -

N A a a a a a0 e
O O 0o N oo o0 A oo NDN -

Jan 2017

Change

K2 2K 2 <€ > > <€ >2» € > < >

Programming Language Ratings
Java 14.215 %
C 11.037 %
C++ 5.603 %
Python 4.678 %
C# 3.754 %
JavaScript 3.465 %
Visual Basic .NET 3.261 %
R 2.549 %
PHP 2.532 %
Perl 2419 %
Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %
PL/SQL 1.429 %

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

O ©O© 0o N o o B~ W N -

N A a a a a a0 e
O O 0o N oo o0 A oo NDN -

Jan 2017

Change

K2 2K 2 <€ > > <€ >2» € > < >

Programming Language Ratings
Java 14.215 %
C 11.037 %
C++ 5.603 %
Python 4.678 %
C# 3.754 %
JavaScript 3.465 %
Visual Basic .NET 3.261 %
R 2.549 %
PHP 2.532 %
Perl 2419 %
Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %
PL/SQL 1.429 % -0 %

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

O ©O© 0o N o o B~ W N -

N A a a a a a0 e
O O 0o N oo o0 A oo NDN -

Jan 2017

Change

K2 2K 2 <€ > > <€ >2» € > < >

Programming Language Ratings
Java 14.215 %
C 11.037 %
C++ 5.603 %
Python 4.678 %
C# 3.754 %
JavaScript 3.465 %
Visual Basic .NET 3.261 %
R 2.549 %
PHP 2.532 %
Perl 2419 %
Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %
PL/SQL 1.429 % -0 %

https://www.tiobe.com

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

o © o0 N o o A W N -

NN A A A A A A A O A =
o © 0o N o a b 0w N -

Jan 2017

—

—
o o oo N B~ 0O w DN

—_—

12
14
11
15

18
23
19
13
20

Change

«

«

Programming Language Ratings Change
Java 14.215 % -3 %
C 11.037 % +1.69%
C++ 5.603 % -1 %
Python 4.678 % +1.21%
C# 3.754 % -0 %
JavaScript 3.465 % +0.62%
Visual Basic .NET 3.261 % +0.30%
R 2.549 % +0.76%
PHP 2.532 % -0 %
Perl 2419 % -0 %
Ruby 2.406 % -0 %
Swift 2.377 % +0.45%
Delphi/Object Pascal 2.377 % -0 %
Visual Basic 2.314 % +0.40%
Assembly language 2.056 % -1%
Objective-C 1.860 % +0.24%
Scratch 1.740 % +0.58%
MATLAB 1.653 % +0.07%
Go 1.569 % -1 %
PL/SQL 1.429 % -0 %

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change
1 1 Java 14.215 % -3 %
2 2 C 11.037 % +1.69%
3 3 C++ 5.603 % -1 %
4 5 Python 4.678 % +1.21%
5 4 v C# 3.754 % -0 %
6 7 JavaScript 3.465 % +0.62%
7 6 v Visual Basic .NET 3.261 % +0.30%
8 16 R 2.549 % +0.76%
9 10 PHP 2.532 % -0 %

10 8 v Perl 2419 % -0 %
11 12 Ruby 2.406 % -0 %
12 14 Swift 2.377 % +0.45%
13 11 v Delphi/Object Pascal 2.377 % -0 %
14 15 Visual Basic 2.314 % +0.40%
15 9 2 Assembly language 2.056 % -1 %
16 18 Objective-C 1.860 % +0.24%
17 23 Scratch 1.740 % +0.5

18 19 MATLAB 1.653 % +0.0

19 13 v Go 1.569 % -1

20 20 PL/SQL 1.429 % -0 %

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018

o © o0 N o o A W N -

NN A A A A A A A O A =
o © 0o N o a b 0w N -

Jan 2017
1

o N B~ 00 0N

16

12
14
11
15

18
23
19
13
20

Change

«

Programming Language Ratings
Java 14.215 %
C 11.037 %
C++ 5.603 %
Python 4.678 %
C# 3.754 %
JavaScript 3.465 %
Visual Basic .NET 3.261 %
R 2.549 %
PHP 2.532 %
Perl 2419 %
Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %
PL/SQL 1.429 %

TIOBE Index for January 2018

January Headline: Programming Language C awarded Language of the Year 2017
https:/www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings
1 1 Java 14.215 %
2 2 C 11.037 %
3 3 C++ 5.603 %
4 5 ~ Python 4.678 %
5 4 v C# 3.754 %
6 7 n JavaScript 3.465 %
7 6 v Visual Basic .NET 3.261 %
8 16 R 2.549 %
9 10 N PHP 2.532 %

10 8 v Perl 2419 %
11 12 N Ruby 2.406 %
Swift 2.377 %
Delphi/Object Pascal 2.377 %
Visual Basic 2.314 %
Assembly language 2.056 %
Objective-C 1.860 %
Scratch 1.740 %
MATLAB 1.653 %
Go 1.569 %

PL/SQL

1.429 %

CRORFBve~ouwsw

int mainQ) {

par {

}

return 0;

MULTIPLE LOOPS WITH par: XC

LD oo~ S W

&ﬁb:&&-&wwwuwwwuwwmmmmwNNNNNH»—*r—‘-Hf—*r—*»—*v—*b—*o—*
)| W N P& WU U S WNPE S WU N OUE WNERE SO N OU S WN =S

port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X

LD oo~ S W

&ﬁb:&&-&wwwuwwwuwwmmmmwNNNNNH»—*r—‘-Hf—*r—*»—*v—*b—*o—*
)| W N P& WU U S WNPE S WU N OUE WNERE SO N OU S WN =S

port but_left = on tile[@]:XS1_PORT_1N;

‘port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X

LD oo~ S W

&ﬁb:&&-&wwwuwwwuwwmmmmwNNNNNH»—*r—‘-Hf—*r—*»—*v—*b—*o—*
)| W N P& WU U S WNPE S WU N OUE WNERE SO N OU S WN =S

port but_left = on tile[@]:XS1_PORT_1N;

‘port but_center = on tile[@]:XS1_PORT_10;

port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};

out buffered port:22 p_sclk = XS1_PORT_1C;

out buffered port:32 p_mosi = XS1_PORT_1D; MULT\P
clock clk_spi = XS1_CLKBLK_1;

int main() {

par {

}

return 0;

(£ 1LOOPS WITH par: X

38
39

41
47
43
44
45

port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}: W\T“ par: XC
out buffered port:22 p_sclk = XS1_PORT_1C; E LOOPS
out buffered port:32 p_mosi = XS1_PORT_1D; MULT\PL

clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1s_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;

38
39

41
47
43
44
45

port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso = XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}: W\T“ par: XC
out buffered port:22 p_sclk = XS1_PORT_1C; E LOOPS
out buffered port:32 p_mosi = XS1_PORT_1D; MULT\PL

clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1s_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;

~ oS W

o oo

44
45

port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; W\TH ar: Xc
out buffered port:22 p_sclk XS1_PORT_1C; LE LOOPS
XS1_PORT_1D; MULT\

out buffered port:32 p_mosi
clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1is_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;

~ oS W

o oo

44
45

port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; W\TH ar: Xc
out buffered port:22 p_sclk XS1_PORT_1C; LE LOOPS
XS1_PORT_1D; MULT\

out buffered port:32 p_mosi
clock clk_spi = XS1_CLKBLK_1;

int main() {

// c_1is_channel

chan c_buts[NUM_BUTTONS];

chan c_ana;

// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat [NUM_HEAT_CTRL];
water_if 1_water;

radio_if i_radio;

spi_master_if i_spi[l];

par {

}

return 0;

LS|

~ S U &

W NN NN NN N NN
o)) 0 ~ =) P

b

L)

[

W w w
Y

Ww w W w w
W M = @ WO 0~ O &

wun &=

port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;

LS|

~ S U &

W NN NN NN N NN
o)) 0 ~ =) P

b

L)

[

W w w
Y

Ww w W w w
W M = @ WO 0~ O &

wun &=

port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;

LS|

~ S U &

W NN NN NN N NN
o)) 0 ~ =) P

b

L)

[

W w w
Y

Ww w W w w
W M = @ WO 0~ O &

wun &=

port but_left = on tile[@]:XS1_PORT_1N;

port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B}; \T\'\ ar: Xc
out buffered port:22 p_sclk = XS1_PORT_1C; E LUOP
out buffered port:32 p_mosi XS1_PORT_1D; MUL

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)

12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;

adc_lib_if 1_adc_1ib[NUM_ADC];
heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if 1_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);

on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);

on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;

port but_left = on tile[@]:XS1_PORT_1N;
port but_center = on tile[@]:XS1_PORT_10;
port but_right = on tile[@]:XS1_PORT_1P;

out buffered port:32 p_miso XS1_PORT_1A;

out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk XS1_PORT_1C;
out buffered port:32 p_mosi XS1_PORT_1D;

(£ 1LOOPS WITH par: X

clock clk_spi = XS1_CLKBLK_1;
int main() {
// c_is_channel
chan c_buts[NUM_BUTTONS];
chan c_ana;
// i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
12c_ext_if 1_12c_ext[NUM_I2C_EX];
i2c_int_if i_i2c_int[NUM_I2C_IN];
adc_acqg_if i_adc_acq;
adc_lib_if 1_adc_1ib[NUM_ADC];

heat_light_if i_heat_1ight[NUM_HEAT_LIGHT];

heat_if 1_heat[NUM_HEAT_CTRL];
water_if i_water;
radio_if i_radio;
spi_master_if i_spi[l];
par {
on tile[@]: installExceptionHandler();
on tile[@].core[@]: I2C_In_Task (i_i2c_int);
on tile[@].core[4]: I2C_Ex_Task (1_12c_ext);
on tile[Q]: Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
T i_heat_light[@], i_heat[@], i_water, c_buts,
1_radio);
on tile[@].core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
on tile[@].core[5]: Temp_Water_Task (i_water, i_heat[1]);
on tile[@].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
on tile[@].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
on tile[@].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
on tile[@]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
on tile[@].core[5]: Port_HL_Task (i_heat_light);
on tile[@].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib
on tile[@].core[6]: Radio_Task (i_radio, i_spi);
on tile[@].core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,
p_ss, 1, clk_spi); // XMOS 1ib
¥
return 0;

ot et ek
W ™

LN &

~] o

w ™~

wun &=

port but_left
‘port but_center
port but_right
out buffered port:
out port

out buffered port:
out buffered port:
clock

int main() {
//
chan
chan
//
12c_ext_if
i2c_int_if
adc_acqg_if
adc_lib_if
heat_light_if
heat_if
water_if
radio_if
spi_master_if

= on tile[@]:XS1_PORT_1N;

= on tile[@]:XS1_PORT_10;

= on tile[@]:XS1_PORT_1P;
32 p_miso XS1_PORT_1A;

(B nip £ LOOPS WITH por: X

32 p_mosi XS1_PORT_1D;
clk_spi = XS1_CLKBLK_1;

c_1is_channel

c_buts[NUM_BUTTONS];

c_ana;

i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
1_12c_ext[NUM_I2C_EX];

i_i2c_int[NUM_I2C_IN];

i_adc_acq;

1_adc_1ib[NUM_ADC];

i_heat_1ight[NUM_HEAT_LIGHT];

i_heat[NUM_HEAT_CTRL];

1_water;

emiti; THIS IS PARALLEL

par {<€—

on tile[@]:

on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]
on tile[@]
on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]

on tile[@]
on tile[@]

}

return 0;

installExceptionHandler();
.core[@]: I2C_In_Task (i_i2c_int);
.core[4]: I2C_Ex_Task (1_12c_ext);
Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

.core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);

.core[5]: Temp_Water_Task (i_water, i_heat[1]);

.core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);

.core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);

.core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);

.core[5]: Port_HL_Task (i_heat_light);

.core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib

.core[6]: Radio_Task (i_radio, i_spi);

.core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,

p_ss, 1, clk_spi); // XMOS 1ib

(W) “J “J “J “J “J N “J “J “J “J
] 0 O~ -) — -]

b

L)

w w w
W ™~

W
~ o U &

= oA A B DS W w ww
- W MNP~ & W0

N

port but_left
‘port but_center
port but_right
out buffered port:
out port

out buffered port:
out buffered port:
clock

int main() {
//
chan
chan
//
12c_ext_if
i2c_int_if
adc_acqg_if
adc_lib_if
heat_light_if
heat_if
water_if
radio_if
spi_master_if

= on tile[@]:XS1_PORT_1N;

= on tile[@]:XS1_PORT_10;

= on tile[@]:XS1_PORT_1P;
32 p_miso XS1_PORT_1A;

s MULTIPLE L0OPS WITH par: X

clk_spi = XS1_CLKBLK_1;

c_1is_channel
c_buts[NUM_BUTTONS];

c_ana;

i_1s_interface, a collection of RPC-type functions with defined roles (none, client, server)
1_12c_ext[NUM_I2C_EX];
i_i2c_int[NUM_I2C_IN];
i_adc_acq;
1_adc_1ib[NUM_ADC];
i_heat_1ight[NUM_HEAT_LIGHT];
i_heat[NUM_HEAT_CTRL];
1_water;

emiti; THIS IS PARALLEL

par {<4—

on tile[@]:

on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]
on tile[@]
on tile[@]
on tile[@]

on tile[@]:

on tile[@]
on tile[@]

on tile[@]
on tile[@]

}

return 0;

installExceptionHandler();
.core[@]: I2C_In_Task (i_i2c_int);
.core[4]: I2C_Ex_Task (1_12c_ext);
Sys_Task (i_i2c_int[@], i_i2c_ext[@], i_adc_lib[0@],
1_heat_1ight[@], i_heat[@], i_water, c_buts,
1_radio);

.core[@]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);

.core[5]: Temp_Water_Task (i_water, i_heat[1]);

.core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);

.core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);

.core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);

.core[5]: Port_HL_Task (i_heat_light);

.core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
startkit_adc (c_ana); // XMOS 1ib

.core[6]: Radio_Task (i_radio, i_spi);

.core[7]: spi_master (i_sp1i, 1, p_sclk, p_mosi, p_miso,

p_ss, 1, clk_spi); // XMOS 1ib

XC from my aquarium controller and xTIMEcomposer

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future

» Callback
» Conceptually simple

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback

» Conceptually simple

» Efficient

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback

» Conceptually simple

» Efficient

» Difficult to compose

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any
» Concurrency TS futures are not widely implemented

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any

» Concurrency TS futures are not widely implemented
TS - Technical Specification

IT'S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

» Channels can be a useful way to think about concurrency
» Callback vs. future
» Callback
» Conceptually simple
» Efficient
» Difficult to compose
» Future
» More complicated
» Less efficient
» Easy to compose i.e. when_any

» Concurrency TS futures are not widely implemented
TS - Technical Specification

https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf

-

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

-

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») §

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.

The reason channels and goroutines are built into the language.

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS») B

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

SELECT (ROB PIKE: «G0 CONCURRENCY PATTERNS»)

v

A control structure unique to concurrency. | r!
The reason channels and goroutines are built into the language. Mioa socommmsrums

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

select {
case vl := <-cl:
fmt.Printf("received %v from cl\n", vl)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", vl)
case c3 <- 23:

fmt.Printf("sent %v to c3\n", 23)
default:

fmt.Printf("no one was ready to communicate\n")
}

SELECT (ROB PIKE: «G0 CONCURRENCY PATTERNS»)

A control structure unique to concurrency.

The reason channels and goroutines are built into the language. Saar eomr

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.

e A default clause, if present, executes immediately if no channel is ready.

select {
case vl := <-cl:
fmt.Printf("received %v from cl\n", vl)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", vl)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

deTaULL: qummmme e Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}

SELECT (ROB PIKE: «G0 CONCURRENCY PATTERNS»)

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.
e A default clause, if present, executes immediately if no channel is ready.

select , ives
casé vl = <-cl: A1ternat1ve iei%ch
fmt.Printf("received %v from cl\n", vl) w, oK = <-ch
case v2 := <-cC2: w, oK _ <-ch
fmt.Printf("received %v from c2\n", v1) var x» O 7 ch
case c3 <- 23: var X, K

fmt.Printf("sent %v to c3\n", 23)

default: .. Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}

ttps://talks.golang.org/2012/concurrency.slide#31

SELECT (ROB PIKE: «G0 CONCURRENCY PATTERNS»)

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Rob Pike

Google 110 2012 - Go Concurrency Palterns

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

e All channels are evaluated.

e Selection blocks until one communication can proceed, which then does.
e [f multiple can proceed, select chooses pseudo-randomly.
e A default clause, if present, executes immediately if no channel is ready.

select , ives
casé vl = <-cl: A1ternat1ve iei%ch
fmt.Printf("received %v from cl\n", vl) w, oK = <-ch
case v2 := <-cC2: w, oK _ <-ch
fmt.Printf("received %v from c2\n", v1) var x» O 7 ch
case c3 <- 23: var X, K

fmt.Printf("sent %v to c3\n", 23)

default: Optional, introduces busy poll, needed some times
fmt.Printf("no one was ready to communicate\n")
}

https://talks.golang.org/2012/concurrency.slide#31

> 000000 000008800808
\

N
\)’,60
v

. m;'

o faggnasanssass

runtime scheduler

oS80 00000RNS

i Loe" % o+ NG

runtime scheduler

transputer

-type

CSP
schedulers

transputer

runtime scheduler

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

erdens lengste jernbanetunnel under vann er 'Bjr'g'JAsom hvelv — kanskje den vanligste bru-

: den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestar av en eller flere buer etter hver-
= halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur
LB TG o N

= LSRR | DRV ¢SE R, L ks (R BN B

Vardane lannora t1amnal fav Kilewafill ~An

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

«gondolbru»

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige
kabler som gir over tirn i begge bruender og er
forankret i kraftige fundamenter ved bruendene.

i kanalsluse -

erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru-

LS den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- 3 Bergmte hengebruer er Brooklyn-brua i New
' halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Vardance lannora tiamnal fae Kilruafil 1 An POSICKRRIPE, | R G SRR T (LAY Y SRR B Rl Fr & 2 5 G i R x

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

«gondolbru» - p
sveve/ly:u) P

e R

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige %yl
kabler som gir over tirn i begge bruender og er

erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru- forankret i kraftige fundamenter ved bruendene.

den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestir av en eller flere buer etter hver- Bergmte hengebruer er Brooklyn-brua i New

' halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Vardane lanaora éinnal fhc KEWLELE A PR aRIC SRR | DK ¢ RIS, [T [() SR B ot e ar % 3 3 5 e X

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

gondolbru»

e T

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige
kabler som gir over tirn i begge bruender og er
forankret i kraftige fundamenter ved bruendene.

% < Tektere
i kanalsluse -

erdens lengste jernbanetunnel under vann er

bygd som hvelv — kanskje den vanligste bru-

— den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestir av en eller flere buer etter hver- ‘ Bergmte hengebruer er Brooklyn-brua i New
' halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
P SROCER | IR e R T [N SRR e y % % 7 B Sl

Vardane lannora t1amnal fav Kilewafill P

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control

«gondolbrun }

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.
Hengebrua har veibanen opphengt i kraftige

' 2 kabler som gir over tirn i begge bruender og er
erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru- : o o

< ; » forankret 1 kraftige fundamenter ved bruendene.
5= den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- ‘ Bergmte hengebruer er Brooklyn-brua i New
; halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En

Vardane lannsora t1mn al £fawe Kileuafill P St e S L e e N R g ¥ 5 2 FATR Sl

= kanalsluse .

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control
» Waiting ships and waiting cars are «orthogonal» (?)

gondolbru»

Eor

IS noen b'nltypér og ellvefartfgsr'e;"%"'

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige
kabler som gir over tirn i begge bruender og er

erdens lengste jernbanetunnel under vann er

bygd som hvelv — kanskje den vanligste bru-

A 5 ! forankret i kraftige fundamenter ved bruendene.
e den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- Bergmte hengebruer er Brooklyn-brua i New
- X . .
halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Vaordance lannora t1mn P B SO el Mt)) An PROSICRRRIP, | hR CR R T LAV B B el e ar i & 2 5 G i

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control

» Waiting ships and waiting cars are «orthogonal» (?)
» Some bridges are for cars, some for trains

i «gondolbru» p

av de stgrste utliggerbruene i verden er Firth

o : G of Forth-brua i Skottland.
;/""’;"';/hm]s]“se s 28 : , Hengebrua har veibanen opphengt i kraftige
‘ kabler som gir over tirn i begge bruender og er
forankret i kraftige fundamenter ved bruendene.

erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru-

S den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- Bergmte hengebruer er Brooklyn-brua i New
2t ¥ . .
halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Vardane lanaora éinnal fhc KEWLELE A PR aRIC SRR | DK ¢ RIS, [T [() SR B ot e ar % 3 7 TSN 7

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control

» Waiting ships and waiting cars are «orthogonal» (?)

» Some bridges are for cars, some for trains

» Some bridges are tall enough to let most ships through

¥ «gondolbru» o

“ o ~ L &4
b -
vertikal lgftebrir-"- (ébﬂ =

politibat brannbat

utligger-

av de stgrste utliggerbruene i verden er Firth
of Forth-brua i Skottland.

Hengebrua har veibanen opphengt i kraftige
kabler som gir over tirn i begge bruender og er
forankret i kraftige fundamenter ved bruendene.

erdens lengste jernbanetunnel under vann er bygd som hvelv — kanskje den vanligste bru-

8= den 7,2 km lange Severn-tunnel fra Cornwall- typen — bestdr av en eller flere buer etter hver- Bergmte hengebruer er Brooklyn-brua i New
halvgya og over til Wales. andre som bazrer veibanen.. En bruker stein, mur- York og Golden Gate-brua i San Francisco. En
Nelann Miakata. simnal TR EERLLELE el e A e o LN e S e SR St ; ks g

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD

» Some road bridges have access control
» Waiting ships and waiting cars are «orthogonal» (?)
» Some bridges are for cars, some for trains
» Some bridges are tall enough to let most ships through
» Which part of this drawing might most resemble a
CSP type system? (Even if CSPm may model everything)

THE CASTLE AND DRAWBRIDGE

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (o

b
%
H

~ vindebru

m~‘~{..;:_'.",.:*' e

NSNS

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (ok!
» ok, if not disturbed!

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (ok!
» ok, if not disturbed!

» Now it is protected!

”.-'."-” % st P ol oy
e SR e s et

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (ok!
» ok, if not disturbed!

» Now it is protected!
» Doing something else

THE CASTLE AND DRAWBRIDGE

» The castle allows all traffic in (ok!)
» ok, if not disturbed!

» Now it is protected!
» Doing something else

» | guess that this is the most important page in this lecture!

CHAN?

TERMINOLOGY?

THINKING ABOUT IT:
CHANNELS MORE THAN CONNECT THREADS

THEY PROTECT THEM

CHAN?

TERMINOLOGY?

THINKING ABOUT IT:

THEY PROTECT THEM

CHAN?

TERMINOLOGY?

THEY PROTECT THEM

CHAN?

TERMINOLOGY?

THEY PROTECT THEM

CHAN?

TERMINOLOGY?

THEY PROTECT THEM

CHAN?

TERMINOLOGY?

THEY PROTECT THEM

i kanalsluse.n slippes vannet inn sa vannspeilet stiger og lgfter lekteren,
eller det slippes ut si lekteren senkes og kan ga nedover til lavere niva

handtak til &4 apne og lukke
sluseportene med

L]

' gjennom :

A CHANNEL HAS SEMANTICS

i kanalsluse.n slippes vannet inn si vannspeilet stlger og lgfter lekteren,
eller det slippes ut sa lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

pa a komme :'mn i slusen

A CANAL LOCK HAS SEMANTICS

i kanalsluse.n slippes vannet inn si vannspeilet stiger og lgfter lekteren,
eller det slippes ut sai lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

.......

n

A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning

i kanalsluse.n slippes vannet inn si vannspeilet stiger og lgfter lekteren,
eller det slippes ut si lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

“lekteren stiger

pa & komme inn i sl

A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning
» The lock keeper operates it

i kanalsluse.n slippes vannet inn sa vannspeilet stiger og lgfter lekteren,
eller det slippes ut si lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

“lekteren stiger

A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning
» The lock keeper operates it
» It has «states»

i kanalsluse.n slippes vannet inn sa vannspeilet stiger og lgfter lekteren,
eller det slippes ut sai lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

\\\\\\\

A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning

» The lock keeper operates it

» It has «states»

» Channels, buffers, queues, pipes also have their semantics

i kanalsluse.n slippes vannet inn sa vannspeilet stiger og lgfter lekteren,
eller det slippes ut sai lekteren senkes og kan ga nedover til lavere niva

handtak til a apne og lukke
sluseportene med

.......

A CANAL LOCK HAS SEMANTICS

» Ship in one direction per turning

» The lock keeper operates it

» It has «states»

» Channels, buffers, queues, pipes also have their semantics
» Simplest CSP chan: synchronous, one-way, no buffer

CHANNEL SEMANTICS
A

CHANNEL SEMANTICS
A

chan

CHANNEL SEMANTICS
A

X

chan

CHANNEL SEMANTICS
A

Y

chan

CHANNEL SEMANTICS

A

Y

CHANNEL SEMANTICS

A

Y

A: run

CHANNEL SEMANTICS

A B

T LA ¢
ﬁ >
»

A: run B: dance

CHANNEL SEMANTICS

A Es.o B
NS

¢ 2
%\v 'i\ &
7
Ko

A: run B: dance

CHANNEL SEMANTICS

A Es.o B
NS

¢ 2
%\v 'i\ &
7
Ko

A: run B: dance - busy!

CHANNEL SEMANTICS

A N B

i / S
ﬁ' /\
Ko

A: run B: dance - busy!

first: have result!

CHANNEL SEMANTICS

A

X

S

A: run B: dance - busy!

first: have result!

CHANNEL SEMANTICS

A

X

S

A: run B: dance - busy!

first: have result!

wait/sleep/block

CHANNEL SEMANTICS

A

S

A: run B: dance - busy!

first: have result!

wait/sleep/block

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A
o

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

thanks! paint

CHANNEL SEMANTICS

A

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

thanks! paint

CHANNEL SEMANTICS

A

RS

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

more to do? .
thanks! paint

CHANNEL SEMANTICS

A
°)e,

A: run B: dance - busy!

first: have result! second: ready!

wait/sleep/block
send > receive

more to do? .
thanks! paint

CHANNEL SEMANTICS

A
°)e,

A: run B: dance - busy!

first: have result!

second: ready!

wait/sleep/block
send > receive

more to do? synchronous
unbutfered thanks! paint

CHANNEL SEMANTICS

A
°)e,

Has been
undisturbed
and running

A:run all the time!

first: have result!

B: dance - busy!

second: ready!

wait/sleep/block
send > receive

more to do? synchronous
unbutfered thanks! paint

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS T0 SHARED DATA

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS T0 SHARED DATA

Chan state (first, local ptr, length)

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS T0 SHARED DATA

CHAN OUT (Chanl, ACPtr->Data);

Chan state (first, local ptr, length)

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS T0 SHARED DATA

CHAN OUT (Chanl, ACPtr->Data);

Chan state (first, local ptr, length)

CHAN IN (Chanl, BCPtr->Data);

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

One-to-one
Many-to-one if channel array
\
Local A
\
PROC A
\ /
CHAN OUT (Chanl CPtr->Data)
§ Blocking if first
S
£
-g Chan state (first, local ptr, length)
=
CHAN IN (Chanl CPtr->Data) ;
Local B /
PROC B

CSP_CHAN

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

One-to-one
Many-to-one if channel array
\
Local A
\
PROC A
\ /
CHAN OUT (Chanl CPtr->Data)
§ Blocking if first
S
£
§ Chan state (first, local ptr, length)
=
CHAN IN (Chanl CPtr->Data) ;
Local B // Some scheduling mechanism
PROC B

CSP_CHAN

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

One-to-one
Many-to-one if channel array
\ Queue only used as ready queue (and timer events)
Local A

CHAN OUT (Chanl No data

No data

Direct memcpy

Local B Some scheduling mechanism

éuarded message

\ / control

CSP_CHAN

PLAN TO LOSE DATA!

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)

» At «the edges» (retransmit?, error report?)

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)

» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)

» At «the edges» (retransmit?, error report?)
» More and more applications are «Safety critical»

» If not necessarily requiring IEC 61508

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)
» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508
» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)

» At «the edges» (retransmit?, error report?)
» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508
» Standard channel (zero-buffered) just moves data or data ownership
» In Go neither make(chan int,1) ormake(chan int) chans will lose data

» Goroutine will block until ready (or get an «ok/err» if you need to)

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data
» Goroutine will block until ready (or get an «ok/err» if you need to)

» But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data
» Goroutine will block until ready (or get an «ok/err» if you need to)

» But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

» Buffer full when no more memory: restart!{®

PLAN TO LOSE DATA!

| TALK @ TALK TO YOU, BUT HOW MUCH DID WE LOSE? &3

» Plan to lose data, at application level (=in your control)
» At «the edges» (retransmit?, error report?)

» More and more applications are «Safety critical»
» If not necessarily requiring IEC 61508

» Standard channel (zero-buffered) just moves data or data ownership

» In Go neither make(chan int,1) ormake(chan int) chans will lose data
» Goroutine will block until ready (or get an «ok/err» if you need to)

» But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

» Buffer full when no more memory: restart!{®

» Therefore:

(\
\Oq

S (lelay/timeout-pollRx>» IS NOT A CONTRACT!

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

(AL
—o o— P2 D A
PB T) LED2
c23||ca2 |
“ 1] \ |l S35 54 .
Jes (LY
r T i
cas||cas
A ",
ASSERT (%) v P
b
[P4 >

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

(r2)& A B
— o P2 D
"B N) LED2
Cc23||C32 | H%?
1 15 6
X1 B ’(. 5-3-5---» X2 X3 X67
—>| P1 P3 C53 P5 <—>(P6)i::(P7 J
JTea S35 X76
A 1 T A g
cas||ca4
Thy . :
ASSERT (A) v f;;?/r'% ! ASSERT (A)
) .
[P4 >

ATl LED4 @yvind Teig, 6.2016 (1.2018)

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

(r2)& A B
— o P2 D
"B N) LED2
| C23||C32 | »H%?
1) 5] lt6
X1 B ’(. 5-3-5---» X2 X3 X67
—>| P1 P3 C53 P5 <—>(P6)i::[P7 J
JTea S35 X76
AN A% AN A A ﬂ
ca3||C34
1/ . .
ASSERT(/E'\) ’ f;;?/r'% : ASSERT(AE)
) :
[P4 >

ATl LED4 @yvind Teig, 6.2016 (1.2018)

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t2? m ’70637/0,;«
T #4. Ky
—2 O_[P2) >
PB NI LED2
| C23||C32
1) !
X1 Ci3 () S35
—_— P1 } ’(P3 C53
C31 D
I\ A5
C43||C34 s
A Ui,
ASSERT (3) v ;f“b
f
or
A E LED4

AB
| »H%._
e X67 i
Zre» (P6 '::j P7 J

5 X76

= f]

E A

. ASSERT (%)

@yvind Teig, 6.2016 (1.2018)

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t2? m ’70637/0,;«
T #4. Ky
—2 O_[P2) >
PB NI LED2
| C23||C32
1) !
X1 Ci3 () S35
—_— P1 } ’(P3 C53
C31 D
I\ A5
C43||C34 s
A Ui,
ASSERT (3) v ;f“b
f
or
A E LED4

AiB
. H%H
E X67 '
2 (P6 '::j P7 J
: X76
: 2 Mt
: A
i ASSERT(})

@yvind Teig, 6.2016 (1.2018)

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t27? | t21 /7057/0/7

g, : '\(ed
—5 o—[P2 o AB e
PB) LED2 5 ves 3
AN |4 5‘(30‘ ede
: e(\d \b(\e
: {(? ¢ a(\d
i) L s I8 TS
X1 L_C18 (.) oes " X2 i X3 X67
—p P il P3 o3| P5 <+—»| P6 P7
ca3||C34 '
hy . :
ASSERT (A) v f;;?/r'% ! ASSERT (A)
P .
[P4 >

ATl LED4 Qyvind Teig, 6.2016 (1.2018)

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t27? | t21 /7057/0/7

Uiy, (€O
4 : \\!
—35 o—[P2 & T A B a ’&(eo‘\)
PB) LEp2 5 7 ed
AN |4 5‘(30‘ ede
5 P @ g™
C23||C32 B AL H
1) 51] T
X Y G138 (o)2, J X2 | X3)3 X67 :[
_V[P1 J< ca1 L P3 C53 P5 ’4—>(P6 P7 J
- C35 5 X76
A) A ; A Mzt
c4s|[cs4 :
g, 5
ASSERT () v f;f/r”b . ASSERT O
b
[P4 > :
ATl LED4 Qyvind Teig, 6.2016 (1.2018)

AAA

Client/server deadlock free
P1-P3, P2-P3, P4-P3

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t27? | t21 /7057/0/7

Uiy, (€O
A’ . \)\(
WKL : Q
B O—[P2 > A E B »® L
PB) Do 5 eV
VN . eQ d@
: 60“(b(\ee
P g andt
t] I S35 5 T T
X1 L_C18 (o) e > X2 i X3 X67
—_— P1 P3 C53 P5 4P| PO6 P7
J< C31) > ; X76
) A1 ® A it
ca3||c34 :
A b/,}%' ; A
ASSERT (}) ¥ b o : ASSERT ()
[P4 | ;
ATl LED4 Qyvind Teig, 6.2016 (1.2018)
Add A
Client/server deadlock free «Knock/comen» is deadlock free

P1-P3, P2-P3, P4-P3 P3-P5

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

PushButton, will H heat up after t27? | t21 /7057/0/7

A’ . \)\(
WL : o)
N9 : x (€
—gg P2 JH A B
e g ot
7] | P! LTS T
X1 L_C18 (o) e > X2 i X3 X67
—p P1 P3 C53 P5 4P| PO6 P7
J< C31) > ; X76
A ¥ PR) T
C43||C34 :
ASSERT (}) ¥ b o : ASSERT ()
[P4 |5 ;
ATl LED4 @yvind Teig, 6.2016 (1.2018)
Ans n n
Client/server deadlock free «Knock/come» is deadlock free XCHAN is deadlock free [2]

P1-P3, P2-P3, P4-P3 P3-P5 P6-P7

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

0
PushButton, will H heat up after t2? t21 ’706//7/0,;«)
U - \\!
W o\
—35_ P2 | A:B
PB LED2 ves” | 3
A4 ;‘(30\ de
EXe) nee
0 6\,6

) :) 7 7t
C43||C34
A "k, § A
ASSERT (%) v e . ASSERT ()
P .
[P4 [:
At LED4 Qyvind Teig, 6.2016 (1.2018)
""""""""""""" AMA A e
Client/server deadlock free «Knock/come» is deadlock free XCHAN is deadlock free [2]
P1-P3, P2-P3, P4-P3 P3-P5 P6-P7 '

No timeout between internal processes! If timeouts: mess guaranteed!

--

AN ADVICE

«Ix-delay/timeout-pollRx» IS NOT A CONTRACT!

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

| 0
PushButton, will H heat up after t2? | 12 l ’706//7/017 -3
U - \(
2.7V o\
—s5 P2 | A B
PB LED2 vest | 4
VN y‘(eo\ d@
EXe) nee
0 6\,6

C43||C34 p :
/i :
A % : A
ASSERT (%) v e . ASSERT ()
[P4 |5 ;
ATl LED4 @yvind Teig, 6.2016 (1.2018)
S AMA A s
Client/server deadlock free «Knock/come» is deadlock free XCHAN is deadlock free [2]
P1-P3, P2-P3, P4-P3 P3-P5 P6-P7

\ No timeout between internal processes! If timeouts: mess guaranteed!

--

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

P3

PS

KNOCK-COME, THEN DATA

P3

PS

KNOCK-COME, THEN DATA

» Deadlock free communication pattern

P3

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

P3

PS

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

P3

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

P3 PS

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

P3} >[P5

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time
» Slave must «knock»

» asynch signal channel, no data, doesn’t block

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time
» Slave must «knock»

» asynch signal channel, no data, doesn’t block

TRRPRE g R LT e PP LT T » data, thanks!

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions
» Master can send data any time
» Slave must «knock»
» asynch signal channel, no data, doesn’t block

Tl [pg } P5

- Eomomomom g,
L d
- e mm m

channels - Y
c_1 ..
_________ ’ ~ '1'.‘_._. |
~ . knock! .)

comel! A
......... ——rrrl C_z
: Atomic L .
: datal
EERERE >L---- [m=-==m=cmmmmmmm-- » data, thanks!

I

» Deadlock free communication pattern
» Both directions

» Master can send data any time
» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Tl [pg } P5

- e mm m

'_---~

channels -
c.1 ..
S e L. ¢ Ve Ns en |
~ . knock! ..)
comel! L "
......... ——rrrl C_z :
: Atomic e ,
: data!
EERERE >L---- [m=-==m=cmmmmmmm-- » data, thanks!
i Roles
I

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Tl [pg } P5

- e mm m

'_---~

channels -
c.1 .. Slave
S e L. ¢ Ve Ns en |
~ . knock! ..)
comel! L "
......... ——rrrl C_z :
: Atomic e ,
: data!
EERERE >L---- [m=-==m=cmmmmmmm-- » data, thanks!
i Roles
I

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Tl [pg } P5

- e mm m

'_---~

channels - J
c.1 .. Slave Master
S e L. ¢ Ve Ns en |
~ knock! _______ |
comel! L "
......... ——rrrl C_z :
: Atomic N J
: data!
EERERE >L---- [m=-==m=cmmmmmmm-- » data, thanks!
i Roles
, 3 .

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

e [
distinct P3 }4 ' P5
channels -

- e mm m

'_---~

c.1 .. Slave Master
e m e eeeae ¢ Ve~ - I
. knock! ______. y
comel! L "
......... —wrzrr, C 2
© Atomic e J
: data!
EERERE >L---- [m=-==m=cmmmmmmm-- » data, thanks!
i Roles
, 3 .

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Slave Master
knock!
------------------------ ’.
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Slave Master
knock!
------------------------ ’.
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

)

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Slave Master
knock!
------------- CLLEEEEETE =
A N
“
come! A
......... N
. “\\
- Atomi -
preme datal %,
------- Pl--mmm----teiia----Ne--p data, thanks!
A
Roles O
‘\
‘:\ """""""""""
S Go:(?)
1o knock!

KNOCK-COME, THEN DATA :¢ may e simulted vith

+® make (chan int,1)

» Deadlock free communication pattern ~ :® thﬂLPf3 will not re-knock!
ot »® on hefore

» Both directions | ' come!

» Master can send data any time e has been received

» Slave must «knock» » @ Thus it will never block

» asynch signal channel, no data, doesn’t block

Slave Master
knock!
------------------------ ’.
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

)

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

Slave Master
knock!
------------------------ ’.
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

_ y y
Slave Master
knock!
------------------------ ’.
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

_ y y
Slave Master
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

_ y y
Slave Master
< data
come!
: Atomic
: |
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

_ y y
Slave Master
< data
come! datal
: Atomic
: l
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

Slave Master

data

TRRPRE R P e PP PP » data, thanks!

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (PSN

" y y
Slave Master
p data
data, thanks! « data!
Atomic
: l
REPEEY A catal ... » data, thanks!
Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions
» Master can send data any time
» Slave must «knock»
» asynch signal channel, no data, doesn’t block

p3 K (st

Slave Master

data

data, thanks! data!

e » data, thanks!

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions
» Master can send data any time
» Slave must «knock»
» asynch signal channel, no data, doesn’t block

P3

<

Slave

data, thanks!

[Ps

Master

data

datal

Roles

data, thanks!

KNOCK-COME, THEN DATA

» Deadlock free communication pattern

» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

P3

<

Slave

data, thanks!

[Ps

Master

data

datal

Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern

» Both directions

» Master can send data any time

» Slave must «knock»

» asynch signal channel, no data, doesn’t block

p3 K (st

Slave Master

data

data, thanks! data!

Roles

KNOCK-COME, THEN DATA

» Deadlock free communication pattern
» Both directions
» Master can send data any time
» Slave must «knock»
» asynch signal channel, no data, doesn’t block

oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

http://oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

VJARDS
Go “simulates” a guard if a communication componentis nil

GUARDS

Go “simulates” a guard if a communication componentis nil

The Go Playground [GI3)

func Server(in <-chan int, out chan<- int) {

value := 0 // Declaration and assignment
valid := false // —"“—

for {

}

GUARDS

Go “simulates” a guard if a communication componentis nil

The Go Playground m

func Server(in <-chan int, out chan<- int) {

value := 0 // Declaration and assignment
valid := false // ——"“—
for {
outc := out // Always use a copy of "out"
select {
case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
valid = true
case outc <- value: // SEND?
valid = false
}
}

GUARDS

Go “simulates” a guard if a communication componentis nil

The Go Playground m m

func Server(in <-chan int, out chan<- int) {
value := 0 // Declaration and assignment
valid := false // ——"—
for {

// If we have no value, then don't attempt
// to send it on the out channel:
if !valid {
outc = nil // Makes input alone in select
setect {
case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
valid = true
case outc <- value: // SEND?
valid = false
}

GUARDS

Go “simulates” a guard if a communication componentis nil

Referred in http://www.teigfam.net/oyvind/pub/pub_details.htmI#XCHAN

The Go Playground m

func Server(in <-chan int, out chan<- int) {
value := 0 // Declaration and assignment
valid := false // ——"—
for {

// If we have no value, then don't attempt
// to send it on the out channel:
if !valid {
outc = nil // Makes input alone in select

select {

case value = <-in: // RECEIVE?
// "Overflow" if valid is already true.
valid = true

case outc <- value: // SEND?
valid = false

¥

http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

XC has guards built into the language. Plus inter face

GUARDS

XC has guards built into the language. Plus inter face

2

1 1interface ifl {

2 void fQ);

3 [[guarded]] void g(); // this function may be guarded in the program
4

5

}

GUARDS

XC has guards built into the language. Plus inter face

2

1 1interface ifl {

2 void fQ);

3 [[guarded]] void g(); // this function may be guarded in the program
4

5

}

GUARDS

XC has guards built into the language. Plus inter face

2 1 1interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
5 ..
2 6 select {
2 7 case 1.f(O): {
8 e
9 } break;

@ 13 }

GUARDS

XC has guards built into the language.Plus interface

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
N ..
2 6 select {
2 7 case 1.f(O): {
8 -
9 } break;

2 13 }

GUARDS

XC has guards built into the language.Plus interface

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4}
5 ..
2 6 select {
2 7 case 1.fO): {
8 -
9 } break;
2 10 case (e == 1) = 1.g0): {
11 -
12 } break;

2 13 }

GUARDS

XC has guards built into the language.Plus interface

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4}
5 ..
2 6 select {
2 7 case 1.fO): {
8 -
9 } break;
2 10 case (e == 1) = 1.g0): {
11 -
12 } break;

2 13 }

GUARDS

XC has guards built into the language.Plus interface

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
..
2 6 select {
B 7 case 1.fQO): {
8 e
9 } break;
2 10 case (e == 1) = 1.g0): {
11 e
12 } break;
2 13 }

Implemented with channels, states and/or locks by the XC compiler

GUARDS

XC has guards built into the language.Plus interface

https://www.xmos.com/published/xmos-programming-guide

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
B ..
2 6 select {
B 7 case 1.fQO): {
8 .
9 } break;
2 10 case (e == 1) = 1.g0): {
11 .
12 } break;
2 13 }

Implemented with channels, states and/or locks by the XC compiler

https://www.xmos.com/published/xmos-programming-guide

GUARDS

XC has guards built into the language.Plus interface

https://www.xmos.com/published/xmos-programming-guide

2/ 1 interface ifl {
2 void fQ);
3 [[guarded]] void g(); // this function may be guarded in the program
4 }
..
2 6 select {
B 7 case 1.fQO): {
8 e
9 } break;
2 10 case (e == 1) = 1.g0): {
11 e
12 } break;
2 13 }

Implemented with channels, states and/or locks by the XC compiler

| use this at home:

https://www.xmos.com/published/xmos-programming-guide

VPRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

R " a
c}\os\o@%’é@& XMOS x¢ LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
> O@e
5
9
KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if { interface startkit_adc_if i_analogue;
[[guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);
[[notification]] slave void complete(void);

} startkit_adc_if;

RO ¢
6300&0@(”6@@6 XMOS xc LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
’bo<°®
5
)
KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if { interface startkit_adc_if i_analogue;
[[guarded]] void trigger(void);

[[clears notification]] int read(unsigned short
adc_val[4]);
[[notification]] slave void complete(void);

} startkit adc if;)
- - interface

i_analogue.trigger();
[[guarded]]

i_analogue.complete();

[[notification]]

Ei_analogue.read(adc_vals.x)S
[[clears_notification]]

RO ¢
csooxo&e,ée@e XMOS xc LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
’00(00
5
)
KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if { interface startkit_adc_if i_analogue;
[[guarded]] void trigger(void);

[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit adc if; .
- - interface

i_analogue.trigger();
[[guarded]]

~ N\ . i_analogue.complete(); .
server t_ana ogu-e -comp. ete(); i (client \
i [[notification]] :

adc_task

| therm_task
<— — -
i i_analogue.read(adc_vals.x) :
' [[clears_notification]] :

[[combinable]] E E [[combinable]]

» X
c}*os\o@%,é@@% XMOS xc LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
? 0‘00
5
0

KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {
[[guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit_adc_if;

interface startkit_adc_if i_analogue;

: i_analogue.trigger(); void therm_task
[[guarded]] ; /] ...
; while(1l) {
select {
: : case wait_for_ button => c_button_2 :> int x: {
4 cerver N\ . i_analogue.complete(); 4 client N\ // ...
§ [[notification]] § i_analogue.trigger();
....... ?.".".".""."."."."."."."."."?";> breaks }
adc_task ” > therm_task cas<;./wait_for_adc => i_analogue.complete(): {
| i_analogue.read(adc_vals.x) | if (i_analogue.read(adc_vals.x)) {
\[[ombinablel] | HEOReame et e s ([[combinablel]) | [l Use it
reak;
}
}
}

}
Drawing by @Qyvind Teig

&
CS‘\OXO& & XMOS xc LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {

[[guarded]]

void trigger(void);

[[clears notification]] int read(unsigned short

adc_val[4]);

[[notification]]
} startkit_adc_if;

slave void complete(void);

interface

i_analogue.trigger();
[[guarded]]

-

\

i_analogue.complete();

/r client \\

server E [[notification]] E
....... .E..g..)
adc_task 2 : ,| therm_task
Ei_analogue.read(adc_vals.x)é
. [[clears notification]] : .
[[combinable]] - [[combinable]]

Also has traditional chan (untyped)

Guaranteed deterministic real-time response

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task
/1l ...
while (1) {
select {
case wait_for_ button => c_button_2 :> int x: {

}

// ...
i_analogue.trigger();
break; }

case wait_for_adc => i_analogue.complete(): {

}

// ...

if (i_analogue.read(adc_vals.x)) {

// Use it
} break;

Drawing by @Qyvind Teig

» X
cgooxo@%,é@@% XMOS xc LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C
? O&G
5
0

KEYWORDS interface, server, client AND slave etc.

typedef interface startkit_adc_if {
[[guarded]] void trigger(void);
[[clears notification]] int read(unsigned short
adc_val[4]);

[[notification]] slave void complete(void);
} startkit_adc_if;

interface startkit_adc_if i_analogue;

: i_analogue.trigger(); void therm_task
[[guarded]] /1l ...
; while(1) {
select {
: 5 case wait_for_ button => c_button_2 :> int x: {
4 server) . i_amalogue.complete(); 4 client) (/ S .
; [[notification]] ; i_analogue.trigger();
IIIIIII !EIIEII> break; }
adc task therm task case wait_for_adc => i_analogue.complete(): {
- S —> - /...
. 1_analogue.read(adc_vals.x) if (i_analogue.read(adc_vals.x)) {
. i [[clears notification]] : . .
[[combinable]] - [[combinable]] // Use it
_ Y, S S) } break;
}
}
Also has traditional chan (untyped) }

}

Guaranteed deterministic real-time response Drawing by Qyvind Teig

This pattern is understood by the compiler and it is deadlock free

occam, too. Butitdidnthave interface

occam, too. Butitdidnthave interface

ALT

occam, too. Butitdidnthave interface

GUARDS

occam, too. Butitdidnthave interface

ALT oo
icountl < 100:& cl1 ? data

GUARDS

occam, too. Butitdidnthave interface

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data

GUARDS

occam, too. Butitdidnthave interface

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

GUARDS

occam, too. Butitdidnthave interface

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

» Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)

GUARDS

occam, too. Butitdidnthave interface

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

» Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)
» Any way gives the wanted effect of «protection»

GUARDS

occam, too. Butitdidnthave interface

https://en.wikipedia.org/wiki/Occam_(programming_language)

ALT ..
countl < 100:& cl ? data

"""" SEQ
countl := countl + 1

merged ! data

count?2 := count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count?

» Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)
» Any way gives the wanted effect of «protection»

https://en.wikipedia.org/wiki/Occam_(programming_language)

VJARDS
PyCSP

VJARDS
PyCSP

» AltSelect

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect

» Guarantees prioritised selection

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection

» FairSelect

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])

» OutputGuard(cout, msg=<message>, action=[optional])

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])

» TimeoutGuard(seconds=<s>, action=[optional])

GUARDS

PyCSP

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])
» TimeoutGuard(seconds=<s>, action=[optional])

» SkipGuard(action=[optional])

GUARDS

PyCSP https://qithub.com/runefribor csp/wiki/Getting_Started With PyCSP 2

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])
» TimeoutGuard(seconds=<s>, action=[optional])

» SkipGuard(action=[optional])

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

GUARDS

PyCSP https://qithub.com/runefribor csp/wiki/Getting_Started With PyCSP 2

» AltSelect

» Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

» PriSelect
» Guarantees prioritised selection
» FairSelect

» See next page (It is called fair choice)

» InputGuard(cin, action=[optional])
» OutputGuard(cout, msg=<message>, action=[optional])
» TimeoutGuard(seconds=<s>, action=[optional])

» SkipGuard(action=[optional])

More about «fairness»:

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC

» Nondeterministic (pseudo random) choice

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC
» Nondeterministic (pseudo random) choice

» OCCam

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC
» Nondeterministic (pseudo random) choice
) occam

» Pri select does it, because then one can build fairness «by algorithm»

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC
» Nondeterministic (pseudo random) choice
» occam
» Pri select does it, because then one can build fairness «by algorithm»

» But which is best? Or best suited? Or good enough?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC

» Nondeterministic (pseudo random) choice
) occam

» Pri select does it, because then one can build fairness «by algorithm»
» But which is best? Or best suited? Or good enough?

» They don't agree!

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC

» Nondeterministic (pseudo random) choice
) occam

» Pri select does it, because then one can build fairness «by algorithm»
» But which is best? Or best suited? Or good enough?

» They don't agree!

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENQUGH?

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

» PyCSP

» Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

» Go, XC

» Nondeterministic (pseudo random) choice
) occam

» Pri select does it, because then one can build fairness «by algorithm»
» But which is best? Or best suited? Or good enough?

» They don't agree!

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

Download MP3 | Android app 44:24

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

Download MP3 | Android app 44:24

» A channels API for Clojure

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

Download MP3 | Android app 44:24

» A channels API for Clojure

» @Java virtual machine and the Common Language Runtime

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

Download MP3 | Android app 44:24

» A channels API for Clojure
» @Java virtual machine and the Common Language Runtime

» and ClojureScript

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

Download MP3 | Android app 44:24

» A channels API for Clojure
» @Java virtual machine and the Common Language Runtime
» and ClojureScript

» JavaScript -> .NET

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

» A channels API for Clojure

» @Java virtual machine and the Common Language Runtime
» and ClojureScript

» JavaScript -> .NET

» Real threads. real blocking

https://www.infoq.com/presentations/clojure-core-async

Clojure core.async

https://www.infog.com/presentations/clojure-core-async

» A channels API for Clojure

» @Java virtual machine and the Common Language Runtime
» and ClojureScript

» JavaScript -> .NET
» Real threads. real blocking

» Do watch it! The best to understand what this is all about!

https://www.infoq.com/presentations/clojure-core-async

BS-100 fire panel (1990..)
In-house scheduler and Modula 2

bl e
—
=
— 3 | \J | | B
: o i :) |
{ o tis i s { -
i o 3 - o | 3
1 —— ° i
— oy | - —
va “"\i; 1 | -
‘\~ o |
A ~ iRe DisPLAY AND ST | e
- > -— ‘

BS-100 fire panel (1990..) Last BS-100 for a ship (2011)
In-house scheduler and Modula 2 Even in display that scheduler

- 1
l- |
!
! 5 ~
| I
{ i
i } e
e { {
{ ! §
\|
)

S f = | o | M
B E 2SS 28 B E S8 S8 A8

BS-100 fire panel (1990..) Last BS-100 for a ship (2011) AutroKeeper (2010..)
In-house scheduler and Modula 2 Even in display that scheduler Chansched scheduler

/

AT

38 l”’»ﬂ;.wdﬂn".(\ IRA A

S 5

Tiw
S W

L™

1990: 0CCAM WITH PROCESS AND CHANNELS.

1990: 0CCAM WITH PROCESS AND CHANNELS.
SHIP’S ENGINE CONDITION MONITORING

(MIP-CALCULATOR: NK-100)

1990: 0CCAM WITH PROCESS AND CHANNELS.
SHIP’S ENGINE CONDITION MONITORING

(MIP-CALCULATOR: NK-100)

T e s
. - = =TT
.‘ RE ’4':‘ B i
o 18 -0 A
3 : - —— —.rv | A
et - it P v
. ‘ et 5 . \
A Jeslen iy vt me E—
‘. 'y - . A% 0,
5
.
P
\/ =
Lol J
£
)
W
S
B
{
*} " —
. \ 7 e 3
- \T ol -~ ¢) 3
30 | mam e
ey .)'. . 3 .“g
o W o = F P 0
e - SR .—-#ﬁ_g&
> P~) ‘n Pl B -
e b 3 & :
e o o A
A O

B \N

Transparent transputer links running in LON industrial network, testing a virtual channel router in my office

Ik

1990: 0CCAM WITH PROCESS AND CHANNELS.
SHIP'S ENGINE CONDITION MONITORING
(MIP-CALCULATOR: NK-100)

N

C? YES: OCCAM TO C: SPOC TOOL

‘*.. occam - Microsoft Visual C++ [break] - [0_Token.inc]

[2) File Edit View Insert Project Debug Took Window Help ‘VO
QD R TR Gafstart Hlin||2HEE > B0 G0 a5 (o

| [- ‘ St =1 s
(Globals] lj‘ll.u"b.i‘ alobal members) _V_" & Scheduler vl " Ji@ hed TE ! =l ’
; af x| | NUME.CMD —— Start the state machine

[+ 4 m_syst files A
<| | b

™ 4 ClassView | (=] Fileiew |

K2 s e
w—) ¢ 14—

{I:

O/'
(o

request numbytes out

(-1)
(=1}

prev.command =
this. . command :=
—=Fkkk
WHILE TRUE
SEQ
—4{4{{ Receive token from input
bytez.in ? numb. received [buffer FROM i0f buffer FOR numb.received]

alxf

Address: [0x008b6113

008B61F8 09 00
008B61FA 00 00

¥C /77777 Received token from input =
nunb.received.total = numb.received.total + numb.received

—Fkk

1 &l &
.o

00BB61FC
D0BB61FE
008B6200
008B6202
008B6204
D08B6206
008B6208
008B620A

o

1«

——{{{ Declarations

INT numb. required:

BOOL =endiAs Envelope; —— ie, Send complete array once
BOOL zeroSizedCountedirravPairSent |

=

A

x| antéxt:tl P_Tokenizer_962(5F_P_Tokenizer_962%] = | X

Name

Yalue l*

B

W il

- _Header oL
m_Eithgiﬁmmwm“m““m_mh_mmmuwmumuwmumuwmumuwmu“.
.W;;Hia;8éGm_Mmmm_mmmm“mmmm“mmmm“mmmm“mmmm“mmw.
R L

T ——

L

.. occam - Microsoft Yisual C++ [break] - [0_Token.inc]

. 5] File Edit VWiew Insert Project Debug Tools Window Help

B EEE a8 - | mEE

Y

H@ HGE | BB G0 e |21 3}

Caly IStalt hd

O

|| il alo bal members)

(Globals] ~] ~]

l & Scheduler

sRce B E D

O/'

alxl

E' m_syst files =
" Z J o

™ 4 ClassView | (=] Fileiew

==}t
WHILE TRUE

SEQ

—{{{
byte=s . 1

I

Addess: [0+008b6118

D08B61F8
008B61FA
00BB61FC
D0BB61FE
008B6200
008B6202
008B6204
008B6206

1. -
o

—Fkk
sokdld

o
SEQ

request numbytes out

prev . command
this . command :

¥C /77777 Received token from input
nunb.received. total

| NUMBE.CHMD —— Start the =s=tate machine <r\
E Q

-1)
-1)

Receive token from input
n ? numb, received [buffer FROM i0f buffer FOR numb.received]

numnb.received.total + numb.received

Declarations

INT numb. reguired:
BOOL =endis Envelope;
BOOL zeroSizedCountedirravPairSent |

—— 1e, Send complete array once

008B6208 00 00 .. | SRR L il ~|

oosBe20a 00 oo . = |[4] 5l

- Contest: | P_Tokenizer_9B2(SF_P_Tokenizer 9627 = L L —
Home S | ..l OO i S S B

s DEO O B0

s s Id 8 8 6 L T T T PP PP PP UXU U D U U D U 1 B T P T PP PR
; ,]T Stresm Output 867 0x0000000a

1995: 0CCAM TO C ON SIGNAL PROCESSOR

Debug Tools Window Help

*.. occam - Microsoft Yisual C++ [break] - [0_Token.inc]

J[%_‘] File Edit View Insert Project

ale

HE & @

S Q:,vlﬂfiﬂiﬁﬁg’yq“lsunt

Y

[T o BTG 0 a5 (o

llﬁhvbahﬂ

_:Jh&wyi

bal members]

S S| [S B2 1 B D O

Al x|

A

(- - B m syst files

B4 ClassView

| f

(E] FileView

;Aggg

Address:

[0x008b61E

008BE1FS
008B61FA
Q08BE1FC
0D08B61FE
008B6200
008Be202
00D8Be204
008B6206A
008BR20S
008B620A

-
. d

5l

Ll

request numbytes out

prev, command

this. command :

—kk}

WHILE TRUE
SEQ

| HNUMB.CMD —— Start the =state machine /(\
= =1) <$>
= (-1)

——{{{ Receive token from input
bytes.in ? numb.received |, [buffer FROM i0f buffer FOR numb.received]

¥C /77777 Received token from input

numnb.received. total = numb.received.total + numb.received
—kk}

——{{{ Declarations

INT numb. reguired:

BOOL =endiAs Envelope; —— ie, Send complete array once

BOOL zeroSizedCountedirravPairSent |

——FFr

SEQ

L L That

x|
K

antékt::’l P_Tokenizer_962(SF_P_Tokenizer_962 *)

Yalue

s

1980

_H _Header

e R
R 11
BV R 11111 F S ———

1995: 0CCAM TO C ON SIGNAL PROCESSOR
(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

*.. occam - Microsoft Yisual C++ [break] - [0_Token.inc]

Debug Tools Window ﬂelpz

[g File Edit \)’lew Insert Project

Y

SR~ BT

Socosy M E R | Gylstan =

HEB@H;B/W B G0 & B

.

]UBkbah]

:_| | (&l alo

bal members)

v‘” ¢ Scheduler

FRc-lem

il

j,n

O

s al x|

W8 ClassView | (=] FileView

m _spst files =
4J { B

=i

Address: [0x008b613
008BE1F8 09 00 I._:_J
008BelFA 00 00 .24
008Be1FC 00 0O ..
DO08B61FE 00 00
0o08Be200 00 00
0osBez202 00 00
0os8Be204 00 00O
pogBes206 00 OO
oogBe208 00 00O ..
008B6204 00 00 . =]

el

request numbytes out

prev. command

this. command :

—kk}

WHILE TRUE
SEQ

(-1)
(=1}

——{{{ Receive token from input

bytez.in ? numb, received ..

¥C /77777 Received token from input

nunb.received.total = numb.received.total + numb.received

—Fkk

——{{{ Declarations
INT numb. reguired:

BOOL =endAs,

Envelope:

BOOL zeroSizedCountedirravPairSent |

e i
SEQ

L L That

| HNUMB.CMD —— Start the =state machine

[buffer FROM i0f buffer FOR numb.received]

—— 1ie, Send complete array once

Debugged
occam
linesin C
directly in
Microsoft
Visual C++

A

2 Content [P_Tokenizer_962(5F_P_Tokenizer 9627 =

Yalue -

1995: 0CCAM TO C ON SIGNAL PROCESSOR

325 T,

1980

_Header i
O =T

LT

b

Chaln

'Id 886 e PP P

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

NTFS2412MC [k:

G0942

SMALL EMBEDDED SYSTEMS

NTFS2412MC

G0942

".\.'; 3 : :) \' '}
Au;croKeeper with Atme‘I AVR Xme

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++

|
- '.' "“
. ... l i' 'o“'
) - b ou B A

.? ¥

NTFS2412MC

G0942

:
e
o
>
»
-
»>
-
|

[&
>
>

ol o
ol 5

— o

R
| ¥ | -
L2 v f (.-‘i \ ' .)_
AutroKeeper with' Atmel AVR Xmeg

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++

NTFS2412MC

G0942

.-_.-,ucu:.‘" 'éo'«-'.ll
St o e ¥ 2% .
- ‘ s
N

: ',."._‘ N

L W T e i ,
An{,tro{<ee"|%er With Atmel A\'/R Xme

-
=

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++
» Project managers need to learn about the «Go potential»

NTFS2412MC

G0942

eTrvYTIIYTILY

., Tl
— i
— ik &

'i~l’ L

Alitrsiceeper with Atmal AVR Xine

-
=

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++
» Project managers need to learn about the «Go potential»
» Don’t take over their toolset without adding your knowledge

NTFS2412MC Fihiacdh:

G0942
- - o

\
280

e
Aut

-
=

eTrvYTIIYTILY

., Tl
— i
— ik &

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++

» Project managers need to learn about the «Go potential»

» Don’t take over their toolset without adding your knowledge
» Like channels and «tight» processes (that protect)

NTFS2412MC Fihiacdh:

G0942
- - o

\
280

e
Aut

-
=

eTrvYTIIYTILY

., Tl
— i
— ik &

SMALL EMBEDDED SYSTEMS

» Will probably keep C for a long time! We also see C++
» Project managers need to learn about the «Go potential»
» Don’t take over their toolset without adding your knowledge
» Like channels and «tight» processes (that protect)
» Even if it will be hard to C/C++ schedulers

Which o you mean?

«BLOCKING» EASY TO MISINTERPRET

Which o you mean?

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

blocking hlocking blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

W

blocking hlocking blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

W

The show goes on with this blocking blocking blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

= Waiting? = hlocking?

v D

The show goes on with this blocking blocking blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

= Waiting? = hlocking?

v D

The show goes on with this blocking This blocking stops the show blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

® 0

The show goes on with this blocking This blocking stops the show blocking

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

® 0

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

® 0

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

® 0

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

) -

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

) -

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPE

THINKING ABOUT IT: -
CHANNELS MORE THAN CONNECT

» The green channel BIOCKINY is normal waiting

» Still called «blocking semantics»

» We depend on this to make channels «protect» threads!

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

) -

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

) -

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!
» The red hlocking is blocking of others that need to proceed
according to specification (too few threads?)

Whichblock ing do you mean?

= Waiting? = hlocking? = deadlock!

) -

The show goes on with this blocking This hlockingstops the show This Blocking stops the world

«BLOCKING» EASY TO MISINTERPRET

» The green channel BIOCKING is normal waiting
» Still called «blocking semantics»
» We depend on this to make channels «protect» threads!
» The red hlocking is blocking of others that need to proceed
according to specification (too few threads?)
» The black blocking is deadlock, pathological, system freeze

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

» Channels and conditional choice (select, alt)

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

» Channels and conditional choice (select, alt)

» In proper processes, concurrency solved

IT'S REALLY ABOUT

THE PROGRAMMING MODEL

» Event loop and callbacks

» Threading often creeps in: problems (shared state,
nesting)

» Channels and conditional choice (select, alt)
» In proper processes, concurrency solved

» Connecting channels to event loops and callbacks when
that’s what you have in a library (like in Closure core.async,
see Further reading)

i_SoftBlink_BNA180.c
RED LED

CHAN_SIGNAL_POWERS_A |
CHAN_EGGTIMER_H1_A |
CHAN_REPTIMER HO_.A { |

Y Write / Erase error
| EEPROM _ | _ _ _ _ _ _

Y
|

" Sleep modes
ChanSched

Timer ticks 10 ms

|
| internal

Y

ChanSched_TimersHandler

AL_HR_A

|
|
|
|
|
|
|
|
|
|
/

I CHAN_SIGNAL
| _Hw_ETC_A
: JTAG-tool and EEPROM.hex | ™ | CHAN_EGG- —
g Production config files ; | CHAI‘;_SIGI;AL | TIMER_X17_LO_A
(=) SRTRESY L Comid N (Relays s E l S CHAN_EGG- —
5 pid_ {Relays), g Checker I | TIMER_X18_L0_A
o |
g i_EEProm_BNA180.c 24 | cre:rLasHaeeproM | [y | Write / read error
2 s pm—naw (T
H 7. Runtime files ‘ ; |§ : [oW EtcFi : AT
L _Comid Relays : ; 9 c_riags
2 '}*’ “; 2 (Dip switch 4) | (errors and AbortedToStandby) s I I
____________ Wossososy Next write to next buffer .: CHAN_SIGNAL CHAN_SIGNAL I I CHAN_SIGNAL
s . 4 i _HW_ETC_A " =
Bootloader : WRITE | READ | _AL_X18 A : | _ALX17_A
! |

1
I
CHAN_SIGN |
I
I
[

Annalamia innoads

! . !
iimmediate; response;

..................................

L

[

(16)

P_Loop_X17

i_AL_Com_BNA180.c

PALC Router _ - — —_

CHAN_SYNCH_WL_X17_A

CHAN_SYNCH
_WL_X18_A

CHAN_SYNCH_

Part of

e 1 \
| Three AL_Com |
m |
b e .
M e |4
| ”QtherSide” I x
| 4=
< L2 &framer - :E 'u2|
! (X15) (5) | 48
| 1)
L}
w | Interrupts: I .
.............. Ly USARTR
------------- 3l 1) USART Tx | E
| Timers [
| Edge | :é
| x18 [1_Loop_RxTx | Eo.'
™| &framer II": 9
an_sigNaL | | (X18)(7) |c = X
poweRs A | |_ iy (k| TR
T T T[T e sorzsme i e 4§
// I EHI.-.AA A l : 3

rocess/data flow diagram

I_SoftBlink_BNA180.c P { i_SystemTimer_BNA180]

JZ RED LED D T
cDec | _ I ¢) i_AL_Com_BNA180.c
ower 5 1.3 i D Timer ticks 10 ms ! ' P_ALC_Router i T B S e P
P I 18 i | internal | : = — \
I
=L v I Three AL_Com |
CHAN_SIGNAL_POWERS A | e &) | CHAN_SYNCH WL X17 A | o |
CHAN_EGGTIMER_H1_A | 12 g | | | I
E R ChanSched_TimersHandler I I AN SYNCH ! ceccccccccccccceas R
CHAN_REPTIMER_HO_A [[| (3] I WL_X18_A o 1 ;
Write / Erase error - i | /l — M | " | '
——————————————————————————— P_Loop_X17 5
EEPROM _§ _ _ _ _ _ _ | HAN_SIGNAL = P | ”OtherSide” | ' X
| _nw_ETC_A | | &=
= JTAG-t00! and EEPROM.hex = | I_Loop_Rx g
- s i CHAN_EGG- — |X15 | 2
g Production config files CH:givSé(:gAk | TIMER_X17_LO_A - | == & framer [¢----- I'-': Ol
= AL Comid (Relays) 8 i = 7 = = CHAN_EGG- — (X15) (5) B
QI RN R S Checker | | TIMER_X18_L0_A | I 58'
o |
Z | ieeprom BNata0e ¢4 | crc:FLasHaeeProm | [| Write / read error | W || Interrupts: : ‘
£ H / ——— e el L)) sk essncccasasnd .
o e ——- — —RAM — { i T gLy 3 1(..) PSR Bx L s
o t TSI Aborted i — - | URERTTE |
w - Runtime files ; | /ToStandby i [o Timers | ¢
L AL Comid Relays 1 . | g HW Etc Flags | I | Edge .E
l Al | 1 : e e, (Dip swltch 4 l(errors and AbortedToStandby) E 2
! LW 23 4o P s s EEPROM | | @ | x18 [|_Loop_RxTx i
"""""" Worrevery RN IoReR i) 3 s £ 1" chan_sinac sy Dl - ™~ |&framer ('""'I 9
bt P ! A\ L L] (|
Bootloader CHANSIGN| | | wrire™ READ | | _Hw_ETC_ A AL X18 A || AL X17 A cHAN_siGNAL | | X18)(7) ¢ 1= %
""""""""""" AL HR.A | | | i ! | POWERS A | | siesssacedisiny, | (I
St | T TR L oopottin 4 |
! Immedlaie response CHAN_SYNCH_ T) ledge,5or2sms | W f-umoo |--->. g-
| S O | T A Y g
Analamia fnnads [! A o / I D InAA L |

Part of process/data flow diagram

«CHANSCHED»: CSP ON AVR XMEGA

ChanSched: finally in one of the controllers synchronous
channels on top of no other runtime («naked»)

i_SoftBlink_BNA180.c

o n
J‘; ?‘ RED LED DcDc | (g 1y — I I !
C power \I i -g g Timer ticks 10 ms | internal | :
lE i'Q
CHAN_SIGNAL_POWERS_A | : o (2 Y I :
']
CHAN_EGGTIMER_H1_A 2ig | i
& =il T RE= ChanSched_TimersHandler I |
CHAN_REPTIMER_HO_A [| | (&] I
)’ Write / Erase error - I | |
P oo ek s ek s el g s A VAP)
EEPROM _ | _ _ _ _ _ _ | HAN_SIGNAL
| _nw_ETC_A
= TAG-tool and EEPROM.h
) JTAG-tool and OM.hex A e I CHAN_EGG- —
@ Production config files CHAN_SIGNAL | TIMER_X17_LO_A
.2_ 7] AL_Comid Relays! © —POWERS_A CHAN EGG-
o SRR A 4 k5 Checker \ | TIMER_X18_LO_A
° |]
= | i_EeProm_BNA18O.C 24 | cRc:FLASH&EEPROM | v Write / read error
(@) £ i) S T
o W T —— 4 — —RAM — {
o — i TTENI Aborted I
[T} - Runtime files ' %]} ToStandby e
w AL Comid_ ___ Relays La . i |g HW Etc Flags | |
. i .~ { = lk ________]":“ s (Dip switch 4) | {(errors and AbortedToStandby) EEsiu |
X J \ B |) T OH--------4 [ey a R —
............ ﬁ/_-....., Next write to next buffer | E 2 E CHAN_SIGNAL CHAN_SIGNAL I CHAN_SIGNAL
i S W | _HW_ETC_A B L
..Bootloader ; CHANSIGN| : | wRiTET READ | “aLxis A |
ALHRA| || : : ! [

Annalamia innoads

..................................

E %_Immedlaiei responsej (

A

P_Loop_X17 {

P_ALC_Router

CHAN_SYNCH_WL_X17_A

CHAN_SYNCH
_WL_X18_A

I
| AL X17_A
! CHAN_SYNCH_ &
LA_X18_A !
(7) —— 5 |«
=z 17, |

4

M

i_AL_Com_BNA180.c

Interrupts:
USART Rx |

CHAN_SIGNAL
POWERS A

| x18 [1_Loop_RxTx
l__ &framer L
|

[

E

/
/

USART Tx |
Timers
Edge |

{ Loop off in:]
1edge,50r25ms 1
J

...............

- eV

Loop_Rx 0pto_1.5._.ﬁ).(" o

Loop_Tx

Part of process/data flow diagram

«CHANSCHED»: CSP ON AVR XMEGA

» ChanSched: finally in one of the controllers synchronous
channels on top of no other runtime («naked»)
» The runtime was more visible to the application code than |
thought (next page)

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

Equal

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

Equal

Sync chan comm needs states

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

N

void P_Standard éHAN_CSP'(void) -
{

CP_a CP = (CP_a)g ThisExtPtr; // Application

switch (CP->State) // and
// communication
// state

{

case ST_INIT: {/*Init*/ break;}
case ST IN:

L e e e ————-
'"CHAN_IN(G_CHAN IN,CP->Chan_vall);
‘CP->State = sT apPLl; 77T
break;

}

case ST _APPL1l: S

{ ©

// Process vall E}
CP->State = ST _OUT; LLl
break;

}

case ST OUT:

{

CP >State = ST_IN,
break;

}

Sync chan comm needs states

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

N

void P_Standard éHAN_CSP'(void) -
{

CP_a CP = (CP_a)g ThisExtPtr; // Application

switch (CP->State) // and
// communication
// state

{

case ST_INIT: {/*Init*/ break;}
case ST IN:

L e e e ————-
'"CHAN_IN(G_CHAN IN,CP->Chan_vall);
‘CP->State = sT apPLl; 77T
break;

}

case ST _APPL1l: S

{ ©

// Process vall E}
CP->State = ST _OUT; LLl
break;

}

case ST OUT:

{

CP >State = ST_IN,
break;

}

Sync chan comm needs states

Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

N

N

void P_Standard(CHAN CSP)(void)
{

CP_a CP = (CP_a)g _ThisExtPtr; //
switch (CP->State) //
//
//

case ST_INIT: {/*Init*/ break;}

case ST IN:

A
* CHAN_IN(G_CHAN IN,CP->Chan_vall);
CP->State = ST APPL1;
break;
}
case ST _APPLl:
{
// Process vall
CP->State = ST_OUT;
break;
}
case ST OUT:
{,

CP >State = ST IN,
break;

}

Sync chan comm needs states

void P_Extended_(ChanSched) (void) :
{

Application CP_a CP = (CP_a)g ThisExtPtr; // Application
and ‘___/j_}gig_hggg ______________ // state only
communication +____while (TRUE) ¥

state {

switch (CP->State)

{
case ST MAIN:

.......................... il

CHAN IN(G_CHAN IN,CP->Chan val2); .

// Process val2

CP->State = ST MAIN, // opt10n1
break;

Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

SAME CODE IN A LIBRARY AND OCCAM

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
int val3; WHILE TRUE
for(;;) INT val4:
{ SEQ
ChanInInt (in, &val3); in ? val4
// Process val3 -- Process val4
ChanOutInt (out, val3); out ! val4
}

}

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (OVERVIEW)

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tick);
SET REPTIMER (CHAN REPTIMER, ADC TIME_TICKS)
CHAN OUT (CHAN DATA 0, Data 0); // first output
while (TRUE)

{

©O 00 Jd4 o U b~ W dhND -

[
o .

23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tick);
SET REPTIMER (CHAN REPTIMER, ADC TIME_TICKS)
CHAN OUT (CHAN DATA 0, Data 0); // first output
while (TRUE)

{

©O 00 Jd4 o U b~ W dhND -

e
H o .

ALT () ; // this is the needed ”PRI_ALT”

17, ALT END() ;

23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Tlmeout Tlck)
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)

{
ALT () ; // this is the needed ”PRI_ALT”

ALT EGGREPTIMER IN (CHAN EGGTIMER) ;

ALT EGGREPTIMER IN (CHAN REPTIMER) ;

ALT SIGNAL CHAN IN (CHAN SIGNAL AD READY);

ALT CHAN IN (CHAN DATA 2, Data 2);

ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;

ALT END() ;

©O 00 Jd4 o U b~ W dhND -

I i o e
o 0 & W N KB O -

[
~

23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”

©O 00 Jd4 o U b~ W dhND -

I i o e
o 0 & W N KB O -

17.
18.

19.
20.
21.
22.
23.

24.

{

Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tick);
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)
{
ALT () ; // this is the needed ”PRI_ALT”
ALT EGGREPTIMER IN (CHAN EGGTIMER) ;
ALT EGGREPTIMER IN (CHAN REPTIMER) ;
ALT SIGNAL CHAN IN (CHAN SIGNAL AD READY);

ALT CHAN IN (CHAN DATA 2, Data 2);
ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;
ALT END()

switch (g _ThisChannellId)
{
. process the guard that has been taken, e.g. CHAN DATA 2
CHAN OUT (CHAN DATA 0, Data 0);

};

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

http://www.teigfam.net/oyvind/pub/pub_details.htmI|#NewALT

ATYPICAL ChanSched PROCESS BODY (QVERVIEW)

Void P _Prefix (void) // extended “Prefix”
{
Prefix CP_a CP = (Prefix CP a)g CP; // get process Context from Scheduler
PROCTOR PREFIX() // jump table (see Section 2)
.. some initialisation
SET EGGTIMER (CHAN EGGTIMER, LED Timeout Tlck)
SET REPTIMER (CHAN REPTIMER, ADC TIME TICKS)
CHAN OUT (CHAN DATA 0, Data 0); ~// first output
while (TRUE)
{
ALT () ; // this is the needed ”PRI_ALT”
ALT EGGREPTIMER IN (CHAN_EGGTIMER);
ALT EGGREPTIMER IN (CHAN_BEPTIMER);
ALT SIGNAL CHAN IN (CHAN_SIGNAL;AD_READY);

©O 00 Jd4 o U b~ W dhND -

H R R R
w N B o -

[y
[~

15. ALT CHAN IN (CHAN DATA 2, Data 2);

16. ALT ALTTIMER IN (CHAN ALTTIMER, TIME TICKS 100 MSECS) ;

17. ALT END()

18. switch (g _ThisChannellId)

19. {

20. .. process the guard that has been taken, e.g. CHAN DATA 2

21. CHAN OUT (CHAN DATA 0, Data 0);

22. };
23. }
24. }

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

Two BN-180 AutroKeepers control loop access

- SECONDARY - -
PRIMARY e 2 o
AL Coms s s s W (D S s B Acamt | remotey | AULFO
o T NOVARNVIVERVIV ARV ARV AR rFTRE E /0 Module Safe
out Detection ! RN (e iy OUT Autro
PN FieldBus
Loop TR
oot IN ouT

BSD-310 o= 0=C—CFro BSD-310

Loop 9] Loop
control) o . control

i as STANDBY =

modules e as ACTIVE =0 e ; modules

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

o SECONDARY -
PRIMARY o ® y -
AL Comr AP\ _«.r WS Ls? o AL_Com# i remot Autro
10 Module NI AN AN SN AN E IO Module | 11O | oote
Detection g S N ouT Autro
R I FieldBus
LOOp s
o] - IN ouT
BSD-310 == BSD-310
Loop - Loop
mouos 3L . as STANDBY | control
- asACTIVE

AL_Com+
1/0 Module

BSD-310
Loop
control o
modules 5

WITH CSP &

Also from real life

Two BN-180 AutroKeepers control loop access
SECONDARY

PRIMARY

DT
YRS IR AR

Loop

D
IR,

Detection

PROMELA &

ETC.

m+) Autro
I%in%:iule (if remote) Safe
IN Autro
FieldBus
ouT
BSD-310
Loop
control
.......... modules

AL_Com+
1/0 Module

BSD-310
Loop
control o
modules 5

WITH CSP &

Also from real life

Two BN-180 AutroKeepers control loop access
SECONDARY

PRIMARY

DT
YRS IR AR

Loop

D
IR,

Detection

PROMELA &

ETC.

m+) Autro
I%in%:iule (if remote) Safe
IN Autro
FieldBus
ouT
BSD-310
Loop
control
.......... modules

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

o SECONDARY ----- =
PRIMARY T
X _«.74__«.7 AP om+) Aut
AL_Gomt SIS rr ol B T
Detection IN Autro
LOO FieldBus
P ouT
BSD-310 =59—6—5 %: BSD-310
Loop Loop
control ___." o , control
modules S 2 as ACTIVE =0 e ; modules

WITH CSP & FDR4, PROMELA & ETC.

» Like, modeling of roles

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

o SECONDARY - =
PRIMARY p . -
P D 12 . § o | Autro
1/0 Module ISR R IR IR E, ouT N 10 Module (if remote) Safe
Detection ! | RN i3 Autro
Loo A U s FieldBus
P S IN == OuT
BSD-310 === 0=5F BSD-310
Loop i Loop
control N , control
U J as STANDBY =
- .
modules 2 as ACTIVE =0 e modules

WITH CSP & FDR4, PROMELA & ETC.

» Like, modeling of roles
» Safe, not simultaneous dual access of detector loop

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

- SECONDARY - -
PRIMARY o ® . =
P D 12 . § o | Autro
/0 Module NS IR AR IR AR — ,i ouT N 10 Module (if remote) Safe
Detection ! | RN i3 Autro
Loo AU e FieldBus
P 4 e IN ouT
BSD-310 = O=C0=C0=0F BSD-310
Loop . Loop
ntrol o ,
modules 3 v as STANDBY control
- asACTIVE 7T e .

WITH CSP & FDR4, PROMELA & ETC.

» Like, modeling of roles
» Safe, not simultaneous dual access of detector loop
» Always one side connected

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

- SECONDARY - -
PRIMARY o ® . =
P D 12 . § o | Autro
/0 Module NS IR AR IR AR — /E ouT N 10 Module (if remote) Safe
Detection ! | RN i3 Autro
Loo AU e FieldBus
P 4 e IN ouT
BSD-310 = O=C0=C0=0F BSD-310
Loop . Loop
ntrol o ,
modules 3 v as STANDBY control
- asACTIVE 7T e .

WITH CSP & FDR4, PROMELA & ETC.

» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop
» Always one side connected

» No oscillations

PRIMARY

AL_Com+
1/0 Module

BSD-310
Loop
control N
modules 5

WITH CSP &

» Like, modeling of roles

Also from real life

Two BN-180 AutroKeepers control loop access

SECONDARY

ATy

{25523
AP 12

O
e e e——C

IS IR FRG ARV RN
Detection
Loop

, PROMELA &

ETC.

» Safe, not simultaneous dual access of detector loop

» Always one side connected
» No oscillations

» Keeps track of the sanity and possibilities of each side

+ . Autro
I%in%(:ir:le (if remote) Safe
2 ouT IN Autro
FieldBus
IN ouT
BSD-310
Loop
_______ control
.......... modules

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

o SECONDARY - =
PRIMARY i ®) -
P D oy 12 g — Autro
1/0 Module NS IR AR IR AR r_i ouT N 10 Module (if remote) Safe
Detection | AN iE Autro
: R FieldBus
Loop o S IN == OUT
5 ; 15
BSD-310 =0—=0—8—C%" B BSD-310
Loop i Loop
control N , control
oo o as STANDBY =
- ;
modules 2 as ACTIVE =0 e modules

WITH CSP & FDR4, PROMELA & SPIN ETC.

» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop

» Always one side connected

» No oscillations

» Keeps track of the sanity and possibilities of each side
» Switches over in milliseconds when needed

Also from real life

Two BN-180 AutroKeepers control loop access
SECONDARY

i

PRIMARY

AL_Com+
Safe 1/0 Module

AL_Com+
1/0 Module

ouT

BSD-310
Loop
control N
modules 5

WITH CSP & FDR4, PROMELA & SPIN ETC.
FORMAL MODELING

(if remote)

Autro
FieldBus

Autro
Safe

BSD-310
Loop
control
modules

» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop

» Always one side connected

» No oscillations

» Keeps track of the sanity and possibilities of each side
» Switches over in milliseconds when needed

» Formal model gave us roles and protocol elements

Also from real life

Two BN-180 AutroKeepers control loop access .. ‘

o SECONDARY - ¥
PRIMARY e F
AL_Com+ ; : AL_Com+ (if remote) Autro
1/0 Module /0 Module Safe
IN Autro
FieldBus
ouT

BSD-310 BSD-310

Loop Loop
control o . control
modules > 2 as ACTIVE =0 e : modules

WITH CSP & FDR4, PROMELA & SPIN ETC.
FORMAL MODELING

» Like, modeling of roles

» Safe, not simultaneous dual access of detector loop

» Always one side connected

» No oscillations

» Keeps track of the sanity and possibilities of each side
» Switches over in milliseconds when needed

» Formal model gave us roles and protocol elements

produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

http://produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

|
l
| 2 € i
r 1\

40

A v De to runde merseme med spor til vantene sages
Master, spryd og rar ut av 2 mm kryssfinér efter monstrene & og 7 pa

Master, raer, baug- og akterspryd ma lages tynne side 39. De tries ned pa stormast og formast,

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og ¢ pa
Master, raer, baug- og akterspryd ma lages tynne side 39. De tries ned pa stormast og formast,

Master, spryd og rar

and think it well done

) VAV

e
! 2 |
A |
r
' q
40
a

Master, spryd og rar
Master, raer, baug- og akterspryd ma lages tynne

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og ¢ pa
side 39. De tres ned pa stormast og formast,

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og 7 pa
Master, raer, baug- og akterspryd ma lages tynne side 39. De tries ned pa stormast og formast,

Master, spryd og rar

Make sure that you will have moved so much those five years

r
;o .

a }

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

Make sure that you will have moved so much those five years

that you wish you could have the time [[]_ \,
° 0' " 2 g
to make it even better now ‘l‘
' :

e

v A A .
P O AL y A . -
7 “ s 7 Z "7'//,’/ -
A :_,-; s o ,/‘ s - //’ ,

AP A IS S L IS S IS SIS LSS S S SIS IS S SIS,

’,;‘ / ,",l,;r 7 ;/ s ¢ s ; -
77 .
“ o ,//%// // 7 A, .
,’l ",.’/ 4 - o ’ :,.},////,.

? o) /
"»,,-.fji,f,’ A A A A A A S A A, s -

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

that you wish you could have the time

to make it even better now

- -

’ o S 3

,. 7 o :

o e > ’

ot .

e ” -

e AT T,
PP B A

s -

So, if you get into real-time, parallel or concurrent systems

— o
IS / ’
" ,/{II;‘ ” o -":' e
TN S o >
TS, Y 15 ’

A 4 7 /

' o, " / ~
) A £ 1 . ;/; . ~

\ A e e i it

557
& b ’% // 777 7 Z

.......... g

7
’,fjj;'j.'/,f;f',lr I A A A A A

De to runde merseme med spor til vantene sages
ut av 2 mm kryssfinér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

that you wish you could have the time
to make it even better now

o o o o ’
o 7 ' »

>~ >~ " >
. = &
A I ”~ -
S o e =
ol o o .

So, if you get into real-time, parallel or concurrent systems

° X’é—'_f’}’; /‘rf{;";: A : / ,:’—é ’
Try to think those five years, ahead £, 2]
c s TX A : ’

De to runde merseme med spor til vantene sages
ut av 2 mm krysshnér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

that you wish you could have the time
to make it even better now

’ A ! o r - . ’ s
o ; o /4/ > A / “ ’ P o
o . -~
A A A -
r 2’ J ’ o I
L / S o o
~ ’.' ” ~ g A ’/ ,// ~ e ”
PP PSP %

A A 7 -
o, ' o - f
",:':'4’./-"_/'/"‘,/-’;/,/7/‘/ / R R R P P o o P o o o e
L 1,— o ’ // //”/’af ’/'/cr’,"'/ A i o~
7% Z

De to runde merseme med spor til vantene sages
ut av 2 mm krysshnér efter monstrene & og 7 pa
Master, rer, baug- og akterspryd ma lages tynne side 39. De tres ned pa stormast og formast,

Master, spryd og rar

HOW DO THEY PROTECT THEM?

HOW DO THEY PROTECT THEM?
SUMMARY.

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)

» At «session layer» (interface with client, server etc.)

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)
» At «session layer» (interface with client, server etc.)

» At application layer (talking with another thread’s
application layer)

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)
» At «session layer» (interface with client, server etc.)

» At application layer (talking with another thread’s
application layer)

» Keeping local state as consistent as possible!

IT'S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT>» THREADS / PROCESSES / TASKS

» They (and the «process model») help with
reasoning about the SW architecture

» At «link layer» (channels)
» At «session layer» (interface with client, server etc.)

» At application layer (talking with another thread’s
application layer)

» Keeping local state as consistent as possible!

» Avoiding, to receive (and send) messages
that must be handled «later»

CONTACT INFO ETC.

oyvind.teig@teigfam.net

http://www.teigfam.net/oyvind/me/email.html

CONTACT INFO ETC.

oyvind.teig@teigfam.net

» This lecture
» Standard picture quality, all build steps

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf

» Full quality, but each page only once, no build steps (around 70 MB)

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf
» This course

NTNU, TTK4145 Sanntidsprogrammering (Real-Time Programming) http://
www.itk.ntnu.no/fag/TTK4145/information/
» My blog notes

http://www.teigfam.net/oyvind/home/technology/

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf
http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.teigfam.net/oyvind/home/technology/
http://www.teigfam.net/oyvind/me/email.html

RELATED READING, SOME ALREADY REFERENCED..

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

» Clojure core.async
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infog.com/presentations/clojure-core-async

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

» Clojure core.async
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infog.com/presentations/clojure-core-async

» New ALT for Application Timers and Synchronisation Point Scheduling
CPA-2009. Per Johan Vannebo, @yvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

» Clojure core.async
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infog.com/presentations/clojure-core-async

» New ALT for Application Timers and Synchronisation Point Scheduling
CPA-2009. Per Johan Vannebo, @yvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

» Last, but not least:

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

» Bell Labs and CSP Threads
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

» Clojure core.async
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infog.com/presentations/clojure-core-async

» New ALT for Application Timers and Synchronisation Point Scheduling
CPA-2009. Per Johan Vannebo, @yvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

» Last, but not least:

» ProXC++ - A CSP-inspired Concurrency Library for Modern C++ with Dynamic
Multithreading for Multi-Core Architectures by, Edvard Severin Pettersen. Master

thesis, NTNU (2017). Read at https://brage.bibsys.no/xmlui/handle/11250/2453094

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

Questions?

Questions?

Thank you!

