
THEY PROTECT THEM

 THINKING ABOUT IT:
CHANNELS MORE THAN CONNECT THREADS

Version of 1. Feb. 2018 (2)

LECTURE BY ØYVIND TEIG, SIV. ING. NTH (1975)

Version of 1. Feb. 2018 (2)

LECTURE BY ØYVIND TEIG, SIV. ING. NTH (1975)
AUTRONICA @ EMBEDDED SYSTEMS

Version of 1. Feb. 2018 (2)

LECTURE BY ØYVIND TEIG, SIV. ING. NTH (1975)
AUTRONICA @ EMBEDDED SYSTEMS (1976-2017)

Version of 1. Feb. 2018 (2)

LECTURE BY ØYVIND TEIG, SIV. ING. NTH (1975)
AUTRONICA @ EMBEDDED SYSTEMS
BLOGGING ABOUT CONCURRENCY ETC. (NOW)

(1976-2017)

Version of 1. Feb. 2018 (2)

LECTURE BY ØYVIND TEIG, SIV. ING. NTH (1975)
AUTRONICA @ EMBEDDED SYSTEMS

INVITED SPEAKER, 1. FEB. 2018 AT
NTNU, TTK4145 SANNTIDSPROGRAMMERING (REAL-TIME PROGRAMMING)

BLOGGING ABOUT CONCURRENCY ETC. (NOW)
(1976-2017)

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

OUR TWO SOLUTIONS
▸ FSM scheduler: Most of our controllers use this

asynchronous SDL-based scheduler
▸ CHAN_CSP: However: in two of the controller there’s

synchronous channels on top of it

31

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

OUR TWO SOLUTIONS
▸ FSM scheduler: Most of our controllers use this

asynchronous SDL-based scheduler
▸ CHAN_CSP: However: in two of the controller there’s

synchronous channels on top of it

31

PLUS A THIRD: «CHANSCHED»

▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)

▸ The runtime was more visible to the application code than I

thought (later)

Part of process/data flow diagram

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

OUR TWO SOLUTIONS
▸ FSM scheduler: Most of our controllers use this

asynchronous SDL-based scheduler
▸ CHAN_CSP: However: in two of the controller there’s

synchronous channels on top of it

31

PLUS A THIRD: «CHANSCHED»

▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)

▸ The runtime was more visible to the application code than I

thought (later)

Part of process/data flow diagram

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE

OUR TWO SOLUTIONS
▸ FSM scheduler: Most of our controllers use this

asynchronous SDL-based scheduler
▸ CHAN_CSP: However: in two of the controller there’s

synchronous channels on top of it

31

PREVIOUS LECTURES WERE QUITE DIFFERENT FROM THIS LECTURE
www.teigfam.net/oyvind/pub/pub.html

OUR TWO SOLUTIONS
▸ FSM scheduler: Most of our controllers use this

asynchronous SDL-based scheduler
▸ CHAN_CSP: However: in two of the controller there’s

synchronous channels on top of it

31

http://www.teigfam.net/oyvind/pub/pub.html

THIS LECTURE

GOAL

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

▸ A little about myself..

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

▸ A little about myself..

▸ ..and my experience over 40+ years in industry

THIS LECTURE

GOAL

▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

▸ A little about myself..

▸ ..and my experience over 40+ years in industry

▸ (btw: This lecture is on my home page (ref. at the end))

ARDUINO IDE BASICS

ARDUINO IDE

«In
 m

edia re
s»

ARDUINO IDE BASICS

▸ «Sketch» is a «project»

ARDUINO IDE

«In
 m

edia re
s»

ARDUINO IDE BASICS

▸ «Sketch» is a «project»

▸ Top level: .ino-files (not main.c)

ARDUINO IDE

«In
 m

edia re
s»

ARDUINO IDE BASICS

▸ «Sketch» is a «project»

▸ Top level: .ino-files (not main.c)

▸ First for Atmel AVR processors

ARDUINO IDE

«In
 m

edia re
s»

ARDUINO IDE BASICS

▸ «Sketch» is a «project»

▸ Top level: .ino-files (not main.c)

▸ First for Atmel AVR processors

▸ I have played with Arduino SAMD Boards
(32-bits ARM Cortex-M0+)

ARDUINO IDE

«In
 m

edia re
s»

ARDUINO IDE

BARE MINIMUM CODE NEEDED

ARDUINO IDE

BARE MINIMUM CODE NEEDED

ARDUINO IDE

BARE MINIMUM CODE NEEDED

ARDUINO IDE

BARE MINIMUM CODE NEEDEDBARE STANDARD CODE NEEDED

ARDUINO IDE
https://www.arduino.cc/en/Tutorial/BareMinimum

BARE MINIMUM CODE NEEDEDBARE STANDARD CODE NEEDED

https://www.arduino.cc/en/Tutorial/BareMinimum

ARDUINO IDE

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 	 loop();	

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 	 loop();	
	 	 if	(serialEventRun)	serialEventRun();

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 init();	
	 initVariant();	
#if	defined(USBCON)	
	 USBDevice.attach();	
#endif

	 	 loop();	
	 	 if	(serialEventRun)	serialEventRun();

BARE MINIMUM CODE CALLED

ARDUINO IDE

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 init();	
	 initVariant();	
#if	defined(USBCON)	
	 USBDevice.attach();	
#endif

	 	 loop();	
	 	 if	(serialEventRun)	serialEventRun();

BARE MINIMUM CODE CALLEDBARE STANDARD CODE CALLED

ARDUINO IDE
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

//	main.cpp	-	Main	loop	for	Arduino	sketches	

#include	<Arduino.h>	

int	main(void)	
{	
	 		
	 		
			
		
		
	 setup();	
	 			
	 	 		
	 	 		
	 		
	 		
}

	 for	(;;)	{	
	 	 		
	 	 		
	 }	
	 return	0;	
}

	 init();	
	 initVariant();	
#if	defined(USBCON)	
	 USBDevice.attach();	
#endif

	 	 loop();	
	 	 if	(serialEventRun)	serialEventRun();

BARE MINIMUM CODE CALLEDBARE STANDARD CODE CALLED

https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/main.cpp

MULTIPLE LOOPS?

ARDUINO IDE

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

ARDUINO IDE

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

▸ «As the others have stated, no you can't have multiple loop
functions»

ARDUINO IDE

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

▸ «As the others have stated, no you can't have multiple loop
functions»

▸ «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

ARDUINO IDE

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

▸ «As the others have stated, no you can't have multiple loop
functions»

▸ «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

▸ = Concurrency

ARDUINO IDE

MULTIPLE LOOPS?

▸ «I have a problem. I want to make a car with a motor, front lights
and rear lights. I want to run them at the same time but in
different loops»

▸ «As the others have stated, no you can't have multiple loop
functions»

▸ «What you need to do is modify your approach so that each
thing you are trying to do can be done sequentially without
blocking (i.e.: remove the delay function usage)»

▸ = Concurrency

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

ARDUINO IDE

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

▸ I once a system like this, it took a person a year to fix the mess!  
This was between interrupts (more later) and «main» and it was written in
assembly

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

▸ I once a system like this, it took a person a year to fix the mess!  
This was between interrupts (more later) and «main» and it was written in
assembly

▸ How to send results away?

ARDUINO IDE

BUT «BLINKING TWO LEDS VIA MOTOR» IS NOT ENOUGH!
▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some
parameters into the actual loop. Atomicity? Protection?

▸ I once a system like this, it took a person a year to fix the mess!  
This was between interrupts (more later) and «main» and it was written in
assembly

▸ How to send results away?

▸ It’s a start, it works here, but it’s not a general problem to design a scheduler by

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

▸ However

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

▸ However

▸ As I see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

▸ However

▸ As I see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

▸ Beware of «toy» schedulers!

ARDUINO IDE

FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread»

▸ Several matches, even one that uses C++11 and the std::thread
class

▸ However

▸ As I see it, they are all «toy» examples of regular scheduling
of threads with no communication mechanism between them

▸ Beware of «toy» schedulers!

▸ But Arduino is not a toy as such!

ARDUINO IDE

ARDUINO «void loop» ON MY DESK

?
?

Fro
m a blog note

ARDUINO «void loop» ON MY DESK

?
?

ARDUINO «void loop» ON MY DESK

?
?

RADIO MODULE
434.0 MHZ

ARDUINO «void loop» ON MY DESK

?
?

RADIO MODULE
434.0 MHZ

ARDUINO «void loop»ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

ARM CORTEX M0

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

ARM CORTEX M0 ARM CORTEX M0

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

ARM CORTEX M0 ARM CORTEX M0

No concurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

XMOS 8-CORE
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

XMOS 8-CORE
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrencyConcurrency

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

XMOS 8-CORE
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrencyConcurrency
MORE LATER

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO «void loop»

XMOS 8-CORE
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrencyConcurrency
NEXT: SchedulerMORE LATER

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD

ARDUINO: Scheduler AND THREE loop()

ARDUINO: Scheduler AND THREE loop()

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
 digitalWrite(led1, HIGH);

 // IMPORTANT:
 // When multiple tasks are running 'delay' passes control
 // to other tasks while waiting and guarantees they get
 // executed.
 delay(1000);

 digitalWrite(led1, LOW);
 delay(1000);
}

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

// Task no.2: blink LED with 0.1 second delay.
void loop2() {
 digitalWrite(led2, HIGH);
 delay(100);
 digitalWrite(led2, LOW);
 delay(100);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
 digitalWrite(led1, HIGH);

 // IMPORTANT:
 // When multiple tasks are running 'delay' passes control
 // to other tasks while waiting and guarantees they get
 // executed.
 delay(1000);

 digitalWrite(led1, LOW);
 delay(1000);
}

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

// Task no.2: blink LED with 0.1 second delay.
void loop2() {
 digitalWrite(led2, HIGH);
 delay(100);
 digitalWrite(led2, LOW);
 delay(100);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
 digitalWrite(led1, HIGH);

 // IMPORTANT:
 // When multiple tasks are running 'delay' passes control
 // to other tasks while waiting and guarantees they get
 // executed.
 delay(1000);

 digitalWrite(led1, LOW);
 delay(1000);
}

// Task no.3: accept commands from Serial port
// '0' turns off LED
// '1' turns on LED
void loop3() {
 if (Serial.available()) {
 char c = Serial.read();
 if (c=='0') {
 digitalWrite(led3, LOW);
 Serial.println("Led turned off!");
 }
 if (c=='1') {
 digitalWrite(led3, HIGH);
 Serial.println("Led turned on!");
 }
 }

 // IMPORTANT:
 // We must call 'yield' at a regular basis to pass
 // control to other tasks.
 yield();
}

ARDUINO: Scheduler AND THREE loop()

// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
 Serial.begin(9600);

 // Setup the 3 pins as OUTPUT
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);

 // Add "loop2" and "loop3" to scheduling.
 // "loop" is always started by default.
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);
}

// Task no.2: blink LED with 0.1 second delay.
void loop2() {
 digitalWrite(led2, HIGH);
 delay(100);
 digitalWrite(led2, LOW);
 delay(100);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
 digitalWrite(led1, HIGH);

 // IMPORTANT:
 // When multiple tasks are running 'delay' passes control
 // to other tasks while waiting and guarantees they get
 // executed.
 delay(1000);

 digitalWrite(led1, LOW);
 delay(1000);
}

// Task no.3: accept commands from Serial port
// '0' turns off LED
// '1' turns on LED
void loop3() {
 if (Serial.available()) {
 char c = Serial.read();
 if (c=='0') {
 digitalWrite(led3, LOW);
 Serial.println("Led turned off!");
 }
 if (c=='1') {
 digitalWrite(led3, HIGH);
 Serial.println("Led turned on!");
 }
 }

 // IMPORTANT:
 // We must call 'yield' at a regular basis to pass
 // control to other tasks.
 yield();
}

https://www.arduino.cc/en/Tutorial/MultipleBlinks

https://www.arduino.cc/en/Reference/Scheduler

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE THIS

ARDUINO: Scheduler AND THREE loop() IS STARTER’S DIY CONCURRENCY

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE THIS

ARDUINO: Scheduler AND THREE loop() IS STARTER’S DIY CONCURRENCY

THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE THIS

ARDUINO: Scheduler AND THREE loop() IS STARTER’S DIY CONCURRENCY

In All Trains to Stop by Hans Steeneken (1979)

WHAT ABOUT INTERRUPTS?

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

▸ Provided this thread only did this job «now» and other threads could do their jobs
independently?

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

▸ Provided this thread only did this job «now» and other threads could do their jobs
independently?

Driver
thread

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

▸ Provided this thread only did this job «now» and other threads could do their jobs
independently?

Driver
thread

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

▸ Provided this thread only did this job «now» and other threads could do their jobs
independently?

Interrupt
hw & sw

Driver
thread

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

WHAT ABOUT INTERRUPTS?
▸ You get a lot of concurrency / real-time with interrupts

▸ After all, the interrupt controller and the HW units (like a USART or TIMER) that mostly
deliver data to it, are separate silicon, not stealing (much) cycles from the processor

▸ Basically, this is all the concurrency that Arduino (AVR, ARM) can offer

▸ However, an «interrupt thread» («task», «process») (??) does not supply you with
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and
then sit idly waiting on a return channel for the result?

▸ Provided this thread only did this job «now» and other threads could do their jobs
independently?

Interrupt
hw & sw

Driver
thread

ARDUINO: Scheduler AND THREE loop() INTS TO THE RESCUE?

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
▸ The XCore multi-core architecture

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
▸ The XCore multi-core architecture
▸ adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in

the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». I think their deterministic timing guarantee (by
compiler and tool) may give full control of interrupt latency [3]

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
▸ The XCore multi-core architecture
▸ adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in

the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». I think their deterministic timing guarantee (by
compiler and tool) may give full control of interrupt latency [3]

[1] https://en.wikipedia.org/wiki/Transputer

https://en.wikipedia.org/wiki/Transputer

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
▸ The XCore multi-core architecture
▸ adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in

the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». I think their deterministic timing guarantee (by
compiler and tool) may give full control of interrupt latency [3]

[2] https://en.wikipedia.org/wiki/Parallax_Propeller
[1] https://en.wikipedia.org/wiki/Transputer

https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

CONCURRENCY

WHAT ABOUT NOT INTERRUPTS?
▸ Three processors I have come across do not have on board interrupt HW
▸ With them, dedicated HW may be replaced by dedicated SW
▸ On the transputer (parallel uP)
▸ there was one 'event' line, similar to a conventional processor's interrupt line.

Treated as a channel (with no data) in occam, a process could 'input' from the
event channel, and proceed only after the event line was asserted [1]

▸ The Parallax Propeller multi-core chip
▸ had the same concept, but also dedicated cores to handle the code (open-

source hardware and Spin language) [2]
▸ The XCore multi-core architecture
▸ adds a more generalised I/O-pad architecture (edge, timer, etc.) handled in

the XC language and intrinsic macros or functions. «Between standard
processor and ASIC». I think their deterministic timing guarantee (by
compiler and tool) may give full control of interrupt latency [3]

[3] https://en.wikipedia.org/wiki/XCore_Architecture
[2] https://en.wikipedia.org/wiki/Parallax_Propeller

[1] https://en.wikipedia.org/wiki/Transputer

https://en.wikipedia.org/wiki/XCore_Architecture
https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Transputer

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ I will show you some here. Has channels and interfaces

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ I will show you some here. Has channels and interfaces
▸ Also based on CSP

AT NTNU?

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ I will show you some here. Has channels and interfaces
▸ Also based on CSP

[1] http://wotug.cs.unlv.edu/generate-program.php?id=1AT NTNU?

http://wotug.cs.unlv.edu/generate-program.php?id=1

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ I will show you some here. Has channels and interfaces
▸ Also based on CSP

[1] http://wotug.cs.unlv.edu/generate-program.php?id=1
[2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-adaAT NTNU?

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

SOME LANGUAGES THAT SUPPORT CONCURRENCY THE «CSP WAY»

▸ occam has (had) channels. Based on CSP (more later)
▸ Was presented here. Is not used in the industry any more,  

but occam-pi is used as a research language
▸ «Unifying Concurrent Programming and Formal  

Verification within One Language» by Welch et.al. [1]
▸ Ada is presented in this course. Has rendezvous
▸ Concurrency-part also based on CSP (and more) [2]

▸ go is presented in this course. Has channels
▸ Also concurrency based on CSP. See next slide
▸ Read «Bell Labs and CSP Threads». Not invented there (but in the UK) - still

impressing [3]
▸ XC by XMOS on XMOS multi-core processors
▸ I will show you some here. Has channels and interfaces
▸ Also based on CSP

[1] http://wotug.cs.unlv.edu/generate-program.php?id=1
[2] https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada

[3] https://swtch.com/~rsc/thread/
AT NTNU?

http://wotug.cs.unlv.edu/generate-program.php?id=1
https://softwareengineering.stackexchange.com/questions/135104/rendezvous-in-ada
https://swtch.com/~rsc/thread/

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»
«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

» 
 https://golang.org/doc/faq#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

» 
 https://golang.org/doc/faq#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

» 
 https://golang.org/doc/faq#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

» 
 https://golang.org/doc/faq#csp

https://golang.org/doc/faq#csp

GO: FREQUENTLY ASKED QUESTIONS (FAQ)

«WHY BUILD CONCURRENCY ON THE IDEAS OF CSP?»

Concurrency and multi-threaded
programming have a reputation for
difficulty.
We believe this is due partly to complex
designs such as pthreads and partly to
overemphasis on low-level details such as
mutexes, condition variables, and memory
barriers.

One of the most successful models for
providing high-level linguistic support for

concurrency comes from Hoare's
Communicating Sequential Processes, or

CSP.
Occam and Erlang are two well known

languages that stem from CSP.

Go's concurrency primitives derive from …
notion of channels as first class objects.

«

Pi-calculus

» 
 https://golang.org/doc/faq#csp

?

https://golang.org/doc/faq#csp

SOME IMPORTANT PROPERTIES

SOME IMPORTANT PROPERTIES

CONCURRENT?

SOME IMPORTANT PROPERTIES

CONCURRENT? PARALLEL?

SOME IMPORTANT PROPERTIES

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

▸ Ada if «Ravenscar profile» (that removes rendezvous!)

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

▸ Ada if «Ravenscar profile» (that removes rendezvous!)

▸ Go is «not real-time»

CONCURRENT? PARALLEL? REAL-TIME?

SOME IMPORTANT PROPERTIES

▸ Concurrent: tasks scheduled on single-core

▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

▸ Ada if «Ravenscar profile» (that removes rendezvous!)

▸ Go is «not real-time»

▸ Occam on many transputers and one transputer; 
different properties. Not really relevant any more, or.. yet(?)

CONCURRENT? PARALLEL? REAL-TIME?

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

1/7

Jan 2018 Jan 2017 Change Programming Language Ratings Change

1 1 Java 14.215 % −3 %

2 2 C 11.037 % +1.69%

3 3 C++ 5.603 % −1 %

4 5 Python 4.678 % +1.21%

5 4 C# 3.754 % −0 %

6 7 JavaScript 3.465 % +0.62%

7 6 Visual Basic .NET 3.261 % +0.30%

8 16 R 2.549 % +0.76%

9 10 PHP 2.532 % −0 %

10 8 Perl 2.419 % −0 %

11 12 Ruby 2.406 % −0 %

12 14 Swift 2.377 % +0.45%

13 11 Delphi/Object Pascal 2.377 % −0 %

14 15 Visual Basic 2.314 % +0.40%

15 9 Assembly language 2.056 % −1 %

16 18 Objective-C 1.860 % +0.24%

17 23 Scratch 1.740 % +0.58%

18 19 MATLAB 1.653 % +0.07%

19 13 Go 1.569 % −1 %

20 20 PL/SQL 1.429 % −0 %

TIOBE Index for January 2018
January Headline: Programming Language C awarded Language of the Year 2017
https://www.tiobe.com

1/7

Who code with chan!

Showing

a fo
rest

for s
ome tre

es

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

int main() {

 par {

 }
 return 0;
}

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC
Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC

THIS IS PARALLEL

Showing

a fo
rest

for s
ome tre

es

port but_left = on tile[0]:XS1_PORT_1N;
port but_center = on tile[0]:XS1_PORT_1O;
port but_right = on tile[0]:XS1_PORT_1P;
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main() {

 par {

 }
 return 0;
}

 // c_is_channel
 chan c_buts[NUM_BUTTONS];
 chan c_ana;
 // i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
 i2c_ext_if i_i2c_ext[NUM_I2C_EX];
 i2c_int_if i_i2c_int[NUM_I2C_IN];
 adc_acq_if i_adc_acq;
 adc_lib_if i_adc_lib[NUM_ADC];
 heat_light_if i_heat_light[NUM_HEAT_LIGHT];
 heat_if i_heat[NUM_HEAT_CTRL];
 water_if i_water;
 radio_if i_radio;
 spi_master_if i_spi[1];

 on tile[0]: installExceptionHandler();
 on tile[0].core[0]: I2C_In_Task (i_i2c_int);
 on tile[0].core[4]: I2C_Ex_Task (i_i2c_ext);
 on tile[0]: Sys_Task (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
 i_heat_light[0], i_heat[0], i_water, c_buts,
 i_radio);
 on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
 on tile[0].core[5]: Temp_Water_Task (i_water, i_heat[1]);
 on tile[0].core[1]: Button_Task (BUT_L, but_left, c_buts[BUT_L]);
 on tile[0].core[1]: Button_Task (BUT_C, but_center, c_buts[BUT_C]);
 on tile[0].core[1]: Button_Task (BUT_R, but_right, c_buts[BUT_R]);
 on tile[0]: ADC_Task (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
 on tile[0].core[5]: Port_HL_Task (i_heat_light);
 on tile[0].core[4]: adc_Task (i_adc_acq, c_ana, ADC_QUERY);
 startkit_adc (c_ana); // XMOS lib
 on tile[0].core[6]: Radio_Task (i_radio, i_spi);
 on tile[0].core[7]: spi_master (i_spi, 1, p_sclk, p_mosi, p_miso,
 p_ss, 1, clk_spi); // XMOS lib

XC from my aquarium controller and xTIMEcomposer

MULTIPLE LOOPS WITH par: XC

THIS IS PARALLEL

Showing

a fo
rest

for s
ome tre

es

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

▸ Concurrency TS futures are not widely implemented

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

▸ Concurrency TS futures are not widely implemented
TS – Technical Specification

IT’S GOING ON IN THE «CPPCON» CONFERENCE AS WELL!

CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

▸ Concurrency TS futures are not widely implemented

[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

TS – Technical Specification

https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
Watch

 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
Watch

 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.
select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.
select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Optional, introduces busy poll, needed some times

Watch
 it!

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.
select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Optional, introduces busy poll, needed some times

Watch
 it!

Alternati
ve receiv

es

x, ok
 = <-ch

x, ok
 := <-ch

var x, ok
 = <-ch

var x, ok
 T = <-ch

SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
https://talks.golang.org/2012/concurrency.slide#31

• All channels are evaluated.
• Selection blocks until one communication can proceed, which then does.
• If multiple can proceed, select chooses pseudo-randomly.
• A default clause, if present, executes immediately if no channel is ready.
select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

A control structure unique to concurrency.
The reason channels and goroutines are built into the language.

Optional, introduces busy poll, needed some times

Watch
 it!

Alternati
ve receiv

es

x, ok
 = <-ch

x, ok
 := <-ch

var x, ok
 = <-ch

var x, ok
 T = <-ch

https://talks.golang.org/2012/concurrency.slide#31

Autro
nica

Discussing new runtime scheduler
made at NTH (1981)

Autro
nica

Discussing new runtime scheduler
made at NTH (1981)

Visiting Whessoe in Newton-Aycliffe (UK)
working with a 16-bits transputer (1995)

Autro
nica

Discussing new runtime scheduler
made at NTH (1981)

Visiting Whessoe in Newton-Aycliffe (UK)
working with a 16-bits transputer (1995)

Starting with C
CSP-type

schedulers
(2002)

Autro
nica

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control
▸ Waiting ships and waiting cars are «orthogonal» (?)

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control
▸ Waiting ships and waiting cars are «orthogonal» (?)
▸ Some bridges are for cars, some for trains

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control
▸ Waiting ships and waiting cars are «orthogonal» (?)
▸ Some bridges are for cars, some for trains
▸ Some bridges are tall enough to let most ships through

BRIDGING A WORLD
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control
▸ Waiting ships and waiting cars are «orthogonal» (?)
▸ Some bridges are for cars, some for trains
▸ Some bridges are tall enough to let most ships through
▸ Which part of this drawing might most resemble a  

CSP type system? (Even if CSPm may model everything)

THE CASTLE AND DRAWBRIDGE

▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!

▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!

!

▸ Now it is protected!

▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!

!

▸ Now it is protected!
▸ Doing something else

▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ I guess that this is the most important page in this lecture!

▸ ok, if not disturbed!

!

▸ Now it is protected!
▸ Doing something else

CHAN?

TERMINOLOGY?

CHAN?

TERMINOLOGY?

CHAN?

TERMINOLOGY?

«DRAWBRIDGES»

CHAN?

TERMINOLOGY?

«DRAWBRIDGES»

«GATES»

CHAN?

TERMINOLOGY?

«DRAWBRIDGES»

«GATES»

guards

CHAN?

TERMINOLOGY?

«DRAWBRIDGES»

«GATES»

guards
CSP «MODEL»

A CHANNEL HAS SEMANTICS

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it
▸ It has «states»

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it
▸ It has «states»
▸ Channels, buffers, queues, pipes also have their semantics

A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it
▸ It has «states»
▸ Channels, buffers, queues, pipes also have their semantics
▸ Simplest CSP chan: synchronous, one-way, no buffer

A B

X

🎬

CHANNEL SEMANTICS

A B

X

🎬

CHANNEL SEMANTICS

chan

A B
🏃

X

🎬

CHANNEL SEMANTICS

chan

A B
🏃 💃

X

🎬

CHANNEL SEMANTICS

chan

A B
🏃 💃

X

🎬

CHANNEL SEMANTICS

A B
🏃

A: run

💃
X

🎬

CHANNEL SEMANTICS

A B
🏃

A: run

💃
X

🎬 B: dance

CHANNEL SEMANTICS

A B
🏃

A: run

💃
X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
🏃

A: run

💃

- busy!

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B

first: have result!

🏃

A: run

💃

- busy!

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
📦

first: have result!

🏃

A: run

💃

- busy!

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
📦

first: have result!

🏃

A: run

💃

- busy!

wait/sleep/block

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

🚧

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B
📦

first: have result!
A: run

💃

- busy!

wait/sleep/block

📦

send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block

📦

send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block

📦

send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

thanks! paint

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

🎨

thanks! paint

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

🎨

thanks! paint
more to do?

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

🎨

thanks! paint

👀

more to do?

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

🎨

thanks! paint

👀

more to do? synchronous 
unbuffered

X

🎬 B: dance

CHANNEL SEMANTICS

A B

first: have result!
A: run

💃

- busy!

wait/sleep/block
send > receive

💁

second: ready!

🎨

thanks! paint

👀

more to do? synchronous 
unbuffered

X

🎬

Has been  
undisturbed  
and running 
all the time! B: dance

CHANNEL SEMANTICS

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

CHAN_OUT (Chan1, ACPtr->Data);

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

CHAN_OUT (Chan1, ACPtr->Data);

CHAN_IN (Chan1, BCPtr->Data);

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

CHAN_OUT (Chan1, ACPtr->Data);

CHAN_IN (Chan1, BCPtr->Data);

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

CHAN_OUT (Chan1, ACPtr->Data);

CHAN_IN (Chan1, BCPtr->Data);

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

Some scheduling mechanism

SYNCHRONOUS CHANNEL, IMPLEMENTATION: NEVER OVERFLOW

SAFE MEMCPY, NO POINTERS TO SHARED DATA

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

CHAN_OUT (Chan1, ACPtr->Data);

CHAN_IN (Chan1, BCPtr->Data);

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

PROC A

PROC B

Chan state (first, local ptr, length)

Schedule B if it was first

Local B

Local A

Queue only used as ready queue (and timer events)

Guarded message
control

D
ire

ct
 m

em
cp

y

Schedule A if it
 was firs

t

Blocking if first

One-to-one
Many-to-one if channel array

CSP_CHAN

No data

No data

Some scheduling mechanism

PLAN TO LOSE DATA!

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

▸ But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

▸ But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much
▸ Buffer full when no more memory: restart!😱

PLAN TO LOSE DATA!

I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

▸ But runtimes/schedulers will, if you use asynch messaging uncritically sooner
or later lose data if sender talks too much
▸ Buffer full when no more memory: restart!😱
▸ Therefore:

PAUSE?

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!
Fro

m a blog note

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

«Knock/come» is deadlock free
P3-P5

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

«Knock/come» is deadlock free
P3-P5

XCHAN is deadlock free [2]
P6-P7

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

«Knock/come» is deadlock free
P3-P5

XCHAN is deadlock free [2]
P6-P7

No timeout between internal processes! If timeouts: mess guaranteed!

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

AN ADVICE

«Tx-delay/timeout-pollRx» IS NOT A CONTRACT!
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

t2

P1 P3 P5

P4

P2PB

t1

t4

t5

P6 P7
t6

t7

H
T

LED2

LED4

X1 X2 X3

A B

C13
C31

C23 C32

C53
S35

C43 C34

X67

X76

Øyvind Teig, 6.2016 (1.2018)

ASSERT() ASSERT()

on/offno blinking

blinking

C35

Client/server deadlock free
P1-P3, P2-P3, P4-P3

«Knock/come» is deadlock free
P3-P5

XCHAN is deadlock free [2]
P6-P7

No timeout between internal processes! If timeouts: mess guaranteed!

HTTP «end of request» not required

timeout t5 and t6 needed

PushButton, will H heat up after t2?

http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/
http://www.teigfam.net/oyvind/home/technology/128-timing-out-design-by-contract-with-a-stopwatch/

KNOCK-COME, THEN DATA

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

come!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

come!

Atomic

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Three
distinct

channels
c_1

c_3

c_2

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Roles

Three
distinct

channels
c_1

c_3

c_2

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave

Roles

Three
distinct

channels
c_1

c_3

c_2

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

Three
distinct

channels
c_1

c_3

c_2

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

Three
distinct

channels
c_1

c_3

c_2

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

Go:(?)
• knock!
• may be simulated with a
• make (chan int,1)
• that P3 will not re-knock!
• on before
• come!
• has been received
• Thus it will never block

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

knock!

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

data
come!

Atomic
data, thanks!

Slave Master

Roles

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

data
come!

Atomic
data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

data

Atomic
data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

data
data, thanks!

Atomic
data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data!

data
data, thanks!

data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data
data, thanks!

data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data
data, thanks!

Slave Master

Roles

data!

KNOCK-COME, THEN DATA
▸ Deadlock free communication pattern
▸ Both directions
▸ Master can send data any time
▸ Slave must «knock»
▸ asynch signal channel, no data, doesn’t block

P3 P5

data
data, thanks!

Slave Master

Roles

data!

oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

http://oyvteig.blogspot.no/2009/03/009-knock-come-deadlock-free-pattern.html

GUARDS

Go “simulates” a guard if a communication component is nil
1 of 4

GUARDS

Go “simulates” a guard if a communication component is nil
1 of 4

GUARDS

Go “simulates” a guard if a communication component is nil
1 of 4

GUARDS

Go “simulates” a guard if a communication component is nil
1 of 4

GUARDS

Go “simulates” a guard if a communication component is nil
Referred in http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

1 of 4

http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface
GUARDS2 of 4

XC has guards built into the language. Plus interface

Implemented with channels, states and/or locks by the XC compiler

GUARDS2 of 4

XC has guards built into the language. Plus interface
https://www.xmos.com/published/xmos-programming-guide

Implemented with channels, states and/or locks by the XC compiler

GUARDS2 of 4

https://www.xmos.com/published/xmos-programming-guide

XC has guards built into the language. Plus interface
https://www.xmos.com/published/xmos-programming-guide

Implemented with channels, states and/or locks by the XC compiler

I use this at home:

GUARDS2 of 4

https://www.xmos.com/published/xmos-programming-guide

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

Asid
e

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

Asid
e

PRIVATE PROJECT: HW AND XC

AQUARIUM CONTROL UNIT WITH XMOS startKIT, 8 LOGICAL CORES IN xC

Asid
e

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.

This pattern is understood by the compiler and it is deadlock free

typedef interface startkit_adc_if {
 [[guarded]] void trigger(void);  
 [[clears_notification]] int read(unsigned short
adc_val[4]);
 [[notification]] slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
 // ...
 while(1) {
 select {
 case wait_for_button => c_button_2 :> int x: {
 // ...
 i_analogue.trigger();
 break; }
 case wait_for_adc => i_analogue.complete(): {
 // ...
 if (i_analogue.read(adc_vals.x)) {
 // Use it
 } break;
 }
 }
 }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig

Showing

a fo
rest

for s
ome tre

es 2

occam, too. But it didn’t have interface
GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT
 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT
 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT
 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT

▸ Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)

 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2

GUARDS3 of 4

occam, too. But it didn’t have interface

 ALT

▸ Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)

▸ Any way gives the wanted effect of «protection»

 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2

GUARDS3 of 4

occam, too. But it didn’t have interface
https://en.wikipedia.org/wiki/Occam_(programming_language)

 ALT

▸ Logical and-condition (XC, occam), or nil (Go), or just not include in the
select set (next page)

▸ Any way gives the wanted effect of «protection»

 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2

GUARDS3 of 4

https://en.wikipedia.org/wiki/Occam_(programming_language)

PyCSP
GUARDS4 of 4

PyCSP
▸ AltSelect

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

GUARDS4 of 4

PyCSP
▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

▸ SkipGuard(action=[optional])

GUARDS4 of 4

PyCSP https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

▸ SkipGuard(action=[optional])

GUARDS4 of 4

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

PyCSP https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

▸ AltSelect

▸ Guards are tested in the order they are given, but final selection may
depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

▸ SkipGuard(action=[optional])

GUARDS4 of 4

More about «fairness»:

https://github.com/runefriborg/pycsp/wiki/Getting_Started_With_PyCSP_2

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

▸ But which is best? Or best suited? Or good enough?

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

▸ But which is best? Or best suited? Or good enough?

▸ They don’t agree!

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

▸ But which is best? Or best suited? Or good enough?

▸ They don’t agree!

🙄

FAIR TREATMENT WHEN NO CLIENT STARVES FOREVER?

«FAIR» CHOICE: REALLY FAIR OR FAIR ENOUGH?

▸ PyCSP

▸ Performs a fair selection by reordering guards based on previous choices
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm»

▸ But which is best? Or best suited? Or good enough?

▸ They don’t agree!

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

🙄

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript

▸ JavaScript -> .NET

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript

▸ JavaScript -> .NET

▸ Real threads. real blocking

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

…

Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript

▸ JavaScript -> .NET

▸ Real threads. real blocking

▸ Do watch it! The best to understand what this is all about!

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async

Autro
nica

BS-100 fire panel (1990..)
In-house scheduler and Modula 2

Autro
nica

Last BS-100 for a ship (2011)
Even in display that scheduler

BS-100 fire panel (1990..)
In-house scheduler and Modula 2

Autro
nica

Last BS-100 for a ship (2011)
Even in display that scheduler

BS-100 fire panel (1990..)
In-house scheduler and Modula 2

AutroKeeper (2010..)
Chansched scheduler

Autro
nica

Autro
nica

1990: OCCAM WITH PROCESS AND CHANNELS.

Autro
nica

1990: OCCAM WITH PROCESS AND CHANNELS.
SHIP’S ENGINE CONDITION MONITORING
(MIP-CALCULATOR: NK-100)

Autro
nica

1990: OCCAM WITH PROCESS AND CHANNELS.
TO ME: NOTHING EVER THE SAME AFTER

SHIP’S ENGINE CONDITION MONITORING
(MIP-CALCULATOR: NK-100)

Autro
nica

1990: OCCAM WITH PROCESS AND CHANNELS.
TO ME: NOTHING EVER THE SAME AFTER

Transparent transputer links running in LON industrial network, testing a virtual channel router in my office

SHIP’S ENGINE CONDITION MONITORING
(MIP-CALCULATOR: NK-100)

Autro
nica

C? YES: OCCAM TO C: SPOC TOOL

Autronica

C? YES: OCCAM TO C: SPOC TOOL

Autronica

1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Autronica

1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Autronica

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Debugged
occam
lines in C
directly in
Microsoft
Visual C++

Autronica

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA

SMALL EMBEDDED SYSTEMS

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»
▸ Don’t take over their toolset without adding your knowledge

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»
▸ Don’t take over their toolset without adding your knowledge
▸ Like channels and «tight» processes (that protect)

AutroKeeper with Atmel AVR Xmega

Advic
e

SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»
▸ Don’t take over their toolset without adding your knowledge
▸ Like channels and «tight» processes (that protect)
▸ Even if it will be hard to C/C++ schedulers

AutroKeeper with Atmel AVR Xmega

Advic
e

«BLOCKING» EASY TO MISINTERPRET

Which blocking do you mean?

Fro
m a blog note

«BLOCKING» EASY TO MISINTERPRET

Which blocking do you mean?

«BLOCKING» EASY TO MISINTERPRET

Which blocking do you mean?

blockingblocking

block ing

blocking

«BLOCKING» EASY TO MISINTERPRET

Which blocking do you mean?

blockingblocking

block ing

blocking

=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET

The show goes on with this blocking

Which blocking do you mean?

blockingblocking

block ing

blocking

=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET

The show goes on with this blocking

Which blocking do you mean?

blockingblocking

block ing

blocking

= blocking?
=

yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

blockingblocking

block ing

blocking

= blocking?
=

yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

blockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

▸ The red blocking is blocking of others that need to proceed
according to specification (too few threads?)

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

▸ The red blocking is blocking of others that need to proceed
according to specification (too few threads?)

▸ The black blocking is deadlock, pathological, system freeze

This blocking stops the showThe show goes on with this blocking

Which blocking do you mean?

This blocking stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!=
yielding?

= waiting?

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state,
nesting)

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state,
nesting)

▸ Channels and conditional choice (select, alt)

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state,
nesting)

▸ Channels and conditional choice (select, alt)

▸ In proper processes, concurrency solved

IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state,
nesting)

▸ Channels and conditional choice (select, alt)

▸ In proper processes, concurrency solved

▸ Connecting channels to event loops and callbacks when
that’s what you have in a library (like in Closure core.async,
see Further reading)

«CHANSCHED»: CSP ON AVR XMEGA

Part of process/data flow diagram

Autro
nica

«CHANSCHED»: CSP ON AVR XMEGA
▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)

Part of process/data flow diagram

Autro
nica

«CHANSCHED»: CSP ON AVR XMEGA
▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)
▸ The runtime was more visible to the application code than I

thought (next page)

Part of process/data flow diagram

Autro
nica

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

Eq
ua

l

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

Eq
ua

l

Sync chan comm needs states

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

} {Equal
Sync chan comm needs states

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

} {Equal
Sync chan comm needs states Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

C CODE ON TOP OF ASYNCH RUNTIME (LEFT) AND NAKED (RIGHT)

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

} {
33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

{Equal
Sync chan comm needs states Synchronisation points no visible state

HOW THE «PROCESS MODEL» INFLUENCE HOW THE CODE LOOKS

SAME CODE IN A LIBRARY AND OCCAM

33

void P_Standard_CHAN_CSP (void) void P_Extended_ChanSched (void)
{ {
 CP_a CP = (CP_a)g_ThisExtPtr; // Application CP_a CP = (CP_a)g_ThisExtPtr; // Application
 switch (CP->State) // and // Init here // state only
 // communication while (TRUE)
 // state {
 { switch (CP->State)
 case ST_INIT: {/*Init*/ break;} {
 case ST_IN: case ST_MAIN:
 { {
 CHAN_IN(G_CHAN_IN,CP->Chan_val1); CHAN_IN(G_CHAN_IN,CP->Chan_val2);
 CP->State = ST_APPL1;
 break;
 }
 case ST_APPL1:
 {
 // Process val1 // Process val2
 CP->State = ST_OUT;
 break;
 }
 case ST_OUT:
 {
 CHAN_OUT(G_CHAN_OUT,CP->Chan_val1); CHAN_OUT(G_CHAN_OUT,CP->Chan_val2);
 CP->State = ST_IN; CP->State = ST_MAIN; // option1
 break; break;
 } }
 }
 } }
} }

void P_libcsp2 (Channel *in, Channel *out) PROC P_occam (CHAN OF INT in, out)
{
 int val3; WHILE TRUE
 for(;;) INT val4:
 { SEQ
 ChanInInt (in, &val3); in ? val4
 // Process val3 -- Process val4
 ChanOutInt (out, val3); out ! val4
 }
} :

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

1. Void P_Prefix (void) // extended “Prefix”
2. {
3. Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler
4. PROCTOR_PREFIX() // jump table (see Section 2)
5. ... some initialisation
6. SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick);
7. SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);
8. CHAN_OUT (CHAN_DATA_0, Data_0); // first output
9. while (TRUE)
10. {
11. ALT(); // this is the needed ”PRI_ALT”
12. ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);
13. ALT_EGGREPTIMER_IN (CHAN_REPTIMER);
14. ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);
15. ALT_CHAN_IN (CHAN_DATA_2, Data_2);
16. ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);
17. ALT_END();
18. switch (g_ThisChannelId)
19. {
20. ... process the guard that has been taken, e.g. CHAN_DATA_2
21. CHAN_OUT (CHAN_DATA_0, Data_0);
22. };
23. }
24. }

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Autro
nica

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

Autro
nica

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed
▸ Formal model gave us roles and protocol elements

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

FORMAL MODELING

1:
n

1:n

PRIMARY
Autro
Safe

Autro
FieldBus

SECONDARY

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection
Loop

BSD-310
Loop

control
modules

BSD-310
Loop

control
modules

11

1213

14
15

16 11

12

OUT IN

IN OUT
15

16

OUT IN
13

14

IN OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed
▸ Formal model gave us roles and protocol elements

produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

http://produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

Final

advic
e

Final

advic
e

Final

advic
e

Make things so well that you can look at it after five years

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years
that you wish you could have the time 
to make it even better now

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years
that you wish you could have the time 
to make it even better now

So, if you get into real-time, parallel or concurrent systems

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years
that you wish you could have the time 
to make it even better now

So, if you get into real-time, parallel or concurrent systems
Try to think those five years, ahead

Final

advic
e

Make things so well that you can look at it after five years
and think it well done

Do as few short cuts as possible!

Make sure that you will have moved so much those five years
that you wish you could have the time 
to make it even better now

So, if you get into real-time, parallel or concurrent systems
Try to think those five years, ahead Now

HOW DO THEY PROTECT THEM?

HOW DO THEY PROTECT THEM?
SUMMARY:

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

▸ At application layer (talking with another thread’s  
application layer)

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

▸ At application layer (talking with another thread’s  
application layer)

▸ Keeping local state as consistent as possible!

IT’S REALLY ABOUT THE «PROCESS MODEL» WE HAVE

CHANNELS «PROTECT» THREADS / PROCESSES / TASKS

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

▸ At application layer (talking with another thread’s  
application layer)

▸ Keeping local state as consistent as possible!

▸ Avoiding, to receive (and send) messages  
that must be handled «later»

CONTACT INFO ETC.

http://www.teigfam.net/oyvind/me/email.html

CONTACT INFO ETC.

▸ This lecture
▸ Standard picture quality, all build steps 

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf
▸ Full quality, but each page only once, no build steps (around 70 MB) 

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf
▸ This course 

NTNU, TTK4145 Sanntidsprogrammering (Real-Time Programming) http://
www.itk.ntnu.no/fag/TTK4145/information/

▸ My blog notes 
 http://www.teigfam.net/oyvind/home/technology/

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf
http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.teigfam.net/oyvind/home/technology/
http://www.teigfam.net/oyvind/me/email.html

RELATED READING, SOME ALREADY REFERENCED..

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

▸ Clojure core.async 
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infoq.com/presentations/clojure-core-async

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

▸ Clojure core.async 
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infoq.com/presentations/clojure-core-async

▸ New ALT for Application Timers and Synchronisation Point Scheduling  
CPA-2009. Per Johan Vannebo, Øyvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

▸ Clojure core.async 
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infoq.com/presentations/clojure-core-async

▸ New ALT for Application Timers and Synchronisation Point Scheduling  
CPA-2009. Per Johan Vannebo, Øyvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

▸ Last, but not least:

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

RELATED READING, SOME ALREADY REFERENCED..

▸ Bell Labs and CSP Threads  
by Russ Cox at https://swtch.com/~rsc/thread/, referred at one of my blog notes: http://
www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/

▸ Clojure core.async 
Lecture (45 mins). Rich Hickey explains callback and event loops vs. processes, select and
channels at http://www.infoq.com/presentations/clojure-core-async

▸ New ALT for Application Timers and Synchronisation Point Scheduling  
CPA-2009. Per Johan Vannebo, Øyvind Teig. Read at http://www.teigfam.net/oyvind/pub/
pub_details.html#NewALT. About ChanSched

▸ Last, but not least:

▸ ProXC++ - A CSP-inspired Concurrency Library for Modern C++ with Dynamic
Multithreading for Multi-Core Architectures by, Edvard Severin Pettersen. Master
thesis, NTNU (2017). Read at https://brage.bibsys.no/xmlui/handle/11250/2453094

https://swtch.com/~rsc/thread/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.teigfam.net/oyvind/home/technology/072-pike-sutter-concurrency-vs-concurrency/
http://www.infoq.com/presentations/clojure-core-async
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT
https://brage.bibsys.no/xmlui/handle/11250/2453094

Questions?

Thank you!
Questions?

