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▸ What are channels (and XC «interface»)?

▸ Why are they more than mere communication channels?

▸ What problems do they offer a resolution to?

▸ A little about myself..

▸ ..and my experience over 40+ years in industry

▸ (btw: This lecture is on my home page (ref. at the end))
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ARDUINO IDE BASICS

▸ «Sketch» is a «project»

▸ Top level: .ino-files (not main.c)

▸ First for Atmel AVR processors

▸ I have played with Arduino SAMD Boards 
(32-bits ARM Cortex-M0+)
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▸ «I have a problem. I want to make a car with a motor, front lights 
and rear lights. I want to run them at the same time but in 
different loops»

▸ «As the others have stated, no you can't have multiple loop 
functions»

▸ «What you need to do is modify your approach so that each 
thing you are trying to do can be done sequentially without 
blocking (i.e.: remove the delay function usage)»

▸ = Concurrency

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno

ARDUINO IDE

https://arduino.stackexchange.com/questions/37684/can-i-make-multiple-void-loops-with-arduino-uno
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▸ Motor loop sets off two LED loops

▸ LED loops do individual blinking

▸ No general mechanism for communication

▸ No scheme to wait for «resources». So it’s busy poll or just a call to set some 
parameters into the actual loop. Atomicity? Protection?

▸ I once a system like this, it took a person a year to fix the mess!  
This was between interrupts (more later) and «main» and it was written in 
assembly

▸ How to send results away?

▸ It’s a start, it works here, but it’s not a general problem to design a scheduler by

ARDUINO IDE
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FINDING SCHEDULERS OR RUNTIME SYSTEMS

▸ In Library Manager, search for «scheduler», «task», «thread» 

▸ Several matches, even one that uses C++11 and the std::thread 
class

▸ However

▸ As I see it, they are all «toy» examples of regular scheduling 
of threads with no communication mechanism between them

▸ Beware of «toy» schedulers!

▸ But Arduino is not a toy as such!

ARDUINO IDE
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XMOS 8-CORE 
XC, C, C++

ARM CORTEX M0 ARM CORTEX M0

No concurrencyConcurrency
NEXT: SchedulerMORE LATER

ARDUINO «void loop» ON MY DESK - PLUS AN XMOS BOARD
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// Include Scheduler since we want to manage multiple tasks.
#include <Scheduler.h>

int led1 = 13;
int led2 = 12;
int led3 = 11;

void setup() {
  Serial.begin(9600);

  // Setup the 3 pins as OUTPUT
  pinMode(led1, OUTPUT);
  pinMode(led2, OUTPUT);
  pinMode(led3, OUTPUT);

  // Add "loop2" and "loop3" to scheduling.
  // "loop" is always started by default.
  Scheduler.startLoop(loop2);
  Scheduler.startLoop(loop3);
}

// Task no.2: blink LED with 0.1 second delay.
void loop2() {
  digitalWrite(led2, HIGH);
  delay(100);
  digitalWrite(led2, LOW);
  delay(100);
}

// Task no.1: blink LED with 1 second delay.
void loop() {
  digitalWrite(led1, HIGH);

  // IMPORTANT:
  // When multiple tasks are running 'delay' passes control
  // to other tasks while waiting and guarantees they get
  // executed.
  delay(1000);

  digitalWrite(led1, LOW);
  delay(1000);
}

// Task no.3: accept commands from Serial port
// '0' turns off LED
// '1' turns on LED
void loop3() {
  if (Serial.available()) {
    char c = Serial.read();
    if (c=='0') {
      digitalWrite(led3, LOW);
      Serial.println("Led turned off!");
    }
    if (c=='1') {
      digitalWrite(led3, HIGH);
      Serial.println("Led turned on!");
    }
  }

  // IMPORTANT:
  // We must call 'yield' at a regular basis to pass
  // control to other tasks.
  yield();
}

https://www.arduino.cc/en/Tutorial/MultipleBlinks

https://www.arduino.cc/en/Reference/Scheduler
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THE WHEELS MAY TURN, BUT IT MAY SOON END UP LIKE THIS

ARDUINO: Scheduler AND THREE loop() IS STARTER’S DIY CONCURRENCY

In All Trains to Stop by Hans Steeneken (1979)
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▸ However, an «interrupt thread» («task», «process») (??) does not supply you with 
general «thread», «task», «process» terms

▸ But could one thread («Driver») initialise an interrupt HW over an init «channel», and 
then sit idly waiting on a return channel for the result?
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▸ Parallel: multi-core

▸ Real-time: meeting deadlines

▸ XC is closest to having all properties

▸ since I guess, if it’s parallel then it’s concurrent

▸ Ada if «Ravenscar profile» (that removes rendezvous!)

▸ Go is «not real-time»

▸ Occam on many transputers and one transputer; 
different properties. Not really relevant any more, or.. yet(?)
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    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib
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port but_left                = on tile[0]:XS1_PORT_1N;  
port but_center              = on tile[0]:XS1_PORT_1O;  
port but_right               = on tile[0]:XS1_PORT_1P; 
out buffered port:32 p_miso  = XS1_PORT_1A;
out port             p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk  = XS1_PORT_1C;
out buffered port:32 p_mosi  = XS1_PORT_1D;
clock                clk_spi = XS1_CLKBLK_1;

int main() {  
     
     
    
     
    
 
  
   
  
     
    
    
    
    par {
       
   
      
         
                                             
                                             
         
         
        
         
         
        
     
        
           
         
          
                
    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib
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port but_left                = on tile[0]:XS1_PORT_1N;  
port but_center              = on tile[0]:XS1_PORT_1O;  
port but_right               = on tile[0]:XS1_PORT_1P; 
out buffered port:32 p_miso  = XS1_PORT_1A;
out port             p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk  = XS1_PORT_1C;
out buffered port:32 p_mosi  = XS1_PORT_1D;
clock                clk_spi = XS1_CLKBLK_1;

int main() {  
     
     
    
     
    
 
  
   
  
     
    
    
    
    par {
       
   
      
         
                                             
                                             
         
         
        
         
         
        
     
        
           
         
          
                
    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib
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port but_left                = on tile[0]:XS1_PORT_1N;  
port but_center              = on tile[0]:XS1_PORT_1O;  
port but_right               = on tile[0]:XS1_PORT_1P; 
out buffered port:32 p_miso  = XS1_PORT_1A;
out port             p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk  = XS1_PORT_1C;
out buffered port:32 p_mosi  = XS1_PORT_1D;
clock                clk_spi = XS1_CLKBLK_1;

int main() {  
     
     
    
     
    
 
  
   
  
     
    
    
    
    par {
       
   
      
         
                                             
                                             
         
         
        
         
         
        
     
        
           
         
          
                
    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib
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port but_left                = on tile[0]:XS1_PORT_1N;  
port but_center              = on tile[0]:XS1_PORT_1O;  
port but_right               = on tile[0]:XS1_PORT_1P; 
out buffered port:32 p_miso  = XS1_PORT_1A;
out port             p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk  = XS1_PORT_1C;
out buffered port:32 p_mosi  = XS1_PORT_1D;
clock                clk_spi = XS1_CLKBLK_1;

int main() {  
     
     
    
     
    
 
  
   
  
     
    
    
    
    par {
       
   
      
         
                                             
                                             
         
         
        
         
         
        
     
        
           
         
          
                
    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib

MULTIPLE LOOPS WITH par: XC
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port but_left                = on tile[0]:XS1_PORT_1N;  
port but_center              = on tile[0]:XS1_PORT_1O;  
port but_right               = on tile[0]:XS1_PORT_1P; 
out buffered port:32 p_miso  = XS1_PORT_1A;
out port             p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk  = XS1_PORT_1C;
out buffered port:32 p_mosi  = XS1_PORT_1D;
clock                clk_spi = XS1_CLKBLK_1;

int main() {  
     
     
    
     
    
 
  
   
  
     
    
    
    
    par {
       
   
      
         
                                             
                                             
         
         
        
         
         
        
     
        
           
         
          
                
    }
    return 0;
}

    //            c_is_channel
    chan          c_buts[NUM_BUTTONS];
    chan          c_ana;
    //            i_is_interface, a collection of RPC-type functions with defined roles (none, client, server)
    i2c_ext_if    i_i2c_ext[NUM_I2C_EX];
    i2c_int_if    i_i2c_int[NUM_I2C_IN];
    adc_acq_if    i_adc_acq;
    adc_lib_if    i_adc_lib[NUM_ADC];
    heat_light_if i_heat_light[NUM_HEAT_LIGHT];
    heat_if       i_heat[NUM_HEAT_CTRL];
    water_if      i_water;
    radio_if      i_radio;
    spi_master_if i_spi[1];

        on tile[0]:                          installExceptionHandler();
        on tile[0].core[0]: I2C_In_Task      (i_i2c_int);
        on tile[0].core[4]: I2C_Ex_Task      (i_i2c_ext);
        on tile[0]:         Sys_Task         (i_i2c_int[0], i_i2c_ext[0], i_adc_lib[0],
                                             i_heat_light[0], i_heat[0], i_water, c_buts,
                                             i_radio);
        on tile[0].core[0]: Temp_Heater_Task (i_heat, i_i2c_ext[1], i_heat_light[1]);
        on tile[0].core[5]: Temp_Water_Task  (i_water, i_heat[1]);
        on tile[0].core[1]: Button_Task      (BUT_L, but_left,   c_buts[BUT_L]);
        on tile[0].core[1]: Button_Task      (BUT_C, but_center, c_buts[BUT_C]);
        on tile[0].core[1]: Button_Task      (BUT_R, but_right,  c_buts[BUT_R]);
        on tile[0]:         ADC_Task         (i_adc_acq, i_adc_lib, NUM_ADC_DATA);
        on tile[0].core[5]: Port_HL_Task     (i_heat_light);
        on tile[0].core[4]: adc_Task         (i_adc_acq, c_ana, ADC_QUERY);
                            startkit_adc     (c_ana); // XMOS lib
        on tile[0].core[6]: Radio_Task       (i_radio, i_spi);
        on tile[0].core[7]: spi_master       (i_spi, 1, p_sclk, p_mosi, p_miso, 
                                              p_ss, 1, clk_spi); // XMOS lib

XC from my aquarium controller and xTIMEcomposer

MULTIPLE LOOPS WITH par: XC

THIS IS PARALLEL
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CHANNELS - AN ALTERNATIVE TO CALLBACKS AND FUTURES
▸ Channels can be a useful way to think about concurrency
▸ Callback vs. future
▸ Callback
▸ Conceptually simple
▸ Efficient
▸ Difficult to compose

▸ Future
▸ More complicated
▸ Less efficient
▸ Easy to compose i.e. when_any

▸ Concurrency TS futures are not widely implemented

[1] Channels - An Alternative to Callbacks and Futures - John Bandela - CppCon 2016

TS – Technical Specification

https://github.com/CppCon/CppCon2016/blob/master/Presentations/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures/Channels%20-%20An%20Alternative%20to%20Callbacks%20and%20Futures%20-%20John%20Bandela%20-%20CppCon%202016.pdf


SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
Watch

 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
Watch

 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 
• A default clause, if present, executes immediately if no channel is ready.

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 
• A default clause, if present, executes immediately if no channel is ready.

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 
• A default clause, if present, executes immediately if no channel is ready.
select { 
    case v1 := <-c1: 
        fmt.Printf("received %v from c1\n", v1) 
    case v2 := <-c2: 
        fmt.Printf("received %v from c2\n", v1) 
    case c3 <- 23: 
        fmt.Printf("sent %v to c3\n", 23) 
    default: 
        fmt.Printf("no one was ready to communicate\n") 
    }

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 
• A default clause, if present, executes immediately if no channel is ready.
select { 
    case v1 := <-c1: 
        fmt.Printf("received %v from c1\n", v1) 
    case v2 := <-c2: 
        fmt.Printf("received %v from c2\n", v1) 
    case c3 <- 23: 
        fmt.Printf("sent %v to c3\n", 23) 
    default: 
        fmt.Printf("no one was ready to communicate\n") 
    }

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Optional, introduces busy poll, needed some times

Watch
 it!



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)

• All channels are evaluated. 
• Selection blocks until one communication can proceed, which then does. 
• If multiple can proceed, select chooses pseudo-randomly. 
• A default clause, if present, executes immediately if no channel is ready.
select { 
    case v1 := <-c1: 
        fmt.Printf("received %v from c1\n", v1) 
    case v2 := <-c2: 
        fmt.Printf("received %v from c2\n", v1) 
    case c3 <- 23: 
        fmt.Printf("sent %v to c3\n", 23) 
    default: 
        fmt.Printf("no one was ready to communicate\n") 
    }

The select statement provides another way to handle multiple channels.  
It's like a switch, but each case is a communication:

A control structure unique to concurrency. 
The reason channels and goroutines are built into the language.

Optional, introduces busy poll, needed some times

Watch
 it!

Alternati
ve receiv

es 

x, ok    
   = <-ch

 

x, ok    
  := <-ch

 

var x, ok
   = <-ch

 

var x, ok
 T = <-ch



SELECT (ROB PIKE: «GO CONCURRENCY PATTERNS»)
https://talks.golang.org/2012/concurrency.slide#31
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BRIDGING A WORLD 
"Verden omkring oss", 1955 ("Odhams Encyclopedia for Children")

▸ Some road bridges have access control 
▸ Waiting ships and waiting cars are «orthogonal» (?)
▸ Some bridges are for cars, some for trains
▸ Some bridges are tall enough to let most ships through
▸ Which part of this drawing might most resemble a  

CSP type system? (Even if CSPm may model everything)



THE CASTLE AND DRAWBRIDGE



▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE



▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!



▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!

!

▸ Now it is protected!



▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ ok, if not disturbed!

!

▸ Now it is protected!
▸ Doing something else



▸ The castle allows all traffic in (ok!)

THE CASTLE AND DRAWBRIDGE

▸ I guess that this is the most important page in this lecture!

▸ ok, if not disturbed!

!

▸ Now it is protected!
▸ Doing something else
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A CHANNEL HAS SEMANTICSA CANAL LOCK HAS SEMANTICS
▸ Ship in one direction per turning
▸ The lock keeper operates it
▸ It has «states»
▸ Channels, buffers, queues, pipes also have their semantics
▸ Simplest CSP chan: synchronous, one-way, no buffer
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I TALK 🤓 TALK TO YOU, BUT HOW MUCH DID WE LOSE? 😷
▸ Plan to lose data, at application level (=in your control)
▸ At «the edges» (retransmit?, error report?)

▸ More and more applications are «Safety critical»
▸ If not necessarily requiring IEC 61508

▸ Standard channel (zero-buffered) just moves data or data ownership
▸ In Go neither make(chan int,1) or make(chan int) chans will lose data
▸ Goroutine will block until ready (or get an «ok/err» if you need to)

▸ But runtimes/schedulers will, if you use asynch messaging uncritically sooner 
or later lose data if sender talks too much
▸ Buffer full when no more memory: restart!😱 
▸ Therefore:
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GUARDS

Go “simulates” a guard if a communication component is nil
Referred in http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

1 of 4
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XC has guards built into the language. Plus interface
https://www.xmos.com/published/xmos-programming-guide

Implemented with channels, states and/or locks by the XC compiler

I use this at home:

GUARDS2 of 4

https://www.xmos.com/published/xmos-programming-guide
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XMOS xC LANGUAGE FOR THEIR CONTROLLERS. EXTENSION OF C

KEYWORDS interface, server, client AND slave etc.
typedef interface startkit_adc_if {
  [[guarded]]              void trigger(void);  
  [[clears_notification]]  int read(unsigned short 
adc_val[4]);
  [[notification]]         slave void complete(void);
} startkit_adc_if;

 i_analogue.trigger();

interface

adc_task

i_analogue.complete();

i_analogue.read(adc_vals.x)
therm_task

[[combinable]] [[combinable]]

 [[notification]]

 [[clears_notification]]

server client

 [[guarded]]

interface startkit_adc_if i_analogue;

[[combinable]]
void therm_task  
  // ...
  while(1) {
    select {
      case wait_for_button => c_button_2 :> int x: {
         // ...
         i_analogue.trigger();
         break; }
      case wait_for_adc => i_analogue.complete(): {
         // ...
         if (i_analogue.read(adc_vals.x)) {                   
           // Use it
         } break;
       }
     }
  }
}Also has traditional chan (untyped)

Guaranteed deterministic real-time response Drawing by Øyvind Teig
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https://en.wikipedia.org/wiki/Occam_(programming_language)

 ALT 

▸ Logical and-condition (XC, occam), or nil (Go), or just not include in the 
select set (next page)

▸ Any way gives the wanted effect of «protection»

  count1 < 100 & c1 ? data 
     SEQ 
       count1 := count1 + 1 
       merged ! data
  count2 < 100 & c2 ? data 
     SEQ 
       count2 := count2 + 1 
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depend on other factors, such as network latency

▸ PriSelect

▸ Guarantees prioritised selection

▸ FairSelect

▸ See next page (It is called fair choice)

▸ InputGuard(cin, action=[optional])

▸ OutputGuard(cout, msg=<message>, action=[optional])

▸ TimeoutGuard(seconds=<s>, action=[optional])

▸ SkipGuard(action=[optional])
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▸ Performs a fair selection by reordering guards based on previous choices 
and then executes a PriSelect on the new order of guards

▸ Go, XC

▸ Nondeterministic (pseudo random) choice

▸ occam

▸ Pri select does it, because then one can build fairness «by algorithm» 

▸ But which is best? Or best suited? Or good enough? 

▸ They don’t agree!

http://www.teigfam.net/oyvind/home/technology/049-nondeterminism/

🙄
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Clojure core.async https://www.infoq.com/presentations/clojure-core-async

▸ A channels API for Clojure

▸ @Java virtual machine and the Common Language Runtime

▸ and ClojureScript 

▸ JavaScript -> .NET

▸ Real threads. real blocking

▸ Do watch it! The best to understand what this is all about!

Watch
 it!

https://www.infoq.com/presentations/clojure-core-async
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1990: OCCAM WITH PROCESS AND CHANNELS.
TO ME: NOTHING EVER THE SAME AFTER

Transparent transputer links running in LON industrial network, testing a virtual channel router in my office

SHIP’S ENGINE CONDITION MONITORING  
(MIP-CALCULATOR: NK-100)

Autro
nica



C? YES: OCCAM TO C: SPOC TOOL

Autronica



C? YES: OCCAM TO C: SPOC TOOL

Autronica



1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Autronica



1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Autronica

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA



1995: OCCAM TO C ON SIGNAL PROCESSOR
C? YES: OCCAM TO C: SPOC TOOL

Debugged 
occam 
lines in C 
directly in 
Microsoft 
Visual C++

Autronica

(MIP-CALCULATOR: NK-200) & NTH DIPLOMA
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SMALL EMBEDDED SYSTEMS
▸ Will probably keep C for a long time! We also see C++
▸ Project managers need to learn about the «Go potential»
▸ Don’t take over their toolset without adding your knowledge
▸ Like channels and «tight» processes (that protect)
▸ Even if it will be hard to C/C++ schedulers

AutroKeeper with Atmel AVR Xmega

Advic
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«BLOCKING» EASY TO MISINTERPRET
▸ The green channel blocking is normal waiting
▸ Still called «blocking semantics»
▸ We depend on this to make channels «protect» threads!

▸ The red blocking is blocking of others that need to proceed 
according to specification (too few threads?)

▸ The black blocking is deadlock, pathological, system freeze

This blocking  stops the showThe show goes on with this  blocking

Which  blocking do you mean?

This blocking  stops the worldblockingblocking

block ing

blocking

= blocking? = deadlock!= 
yielding?

= waiting?
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IT’S REALLY ABOUT

THE PROGRAMMING MODEL

▸ Event loop and callbacks

▸ Threading often creeps in: problems (shared state, 
nesting)

▸ Channels and conditional choice (select, alt) 

▸ In proper processes, concurrency solved

▸ Connecting channels to event loops and callbacks when 
that’s what you have in a library (like in Closure core.async, 
see Further reading)
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«CHANSCHED»: CSP ON AVR XMEGA
▸ ChanSched: finally in one of the controllers synchronous  

channels on top of no other runtime («naked»)
▸ The runtime was more visible to the application code than I 

thought (next page)

Part of process/data flow diagram
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33

void P_Standard_CHAN_CSP (void)                      void P_Extended_ChanSched (void)
{                                                    {
  CP_a CP = (CP_a)g_ThisExtPtr; // Application         CP_a CP = (CP_a)g_ThisExtPtr; // Application
  switch (CP->State)            // and                 // Init here                  // state only
                                // communication       while (TRUE)
                                // state               {
  {                                                      switch (CP->State)
    case ST_INIT: {/*Init*/ break;}                      {
    case ST_IN:                                            case ST_MAIN:
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A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }



EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }



EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }



EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }



EXAMPLE FROM A LIBRARY IN C (THAT RUNS NOW ON THE 7 SEAS)

A TYPICAL ChanSched PROCESS BODY (OVERVIEW)
1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

1. Void P_Prefix (void)                  // extended “Prefix”  
2. { 
3.   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 
4.   PROCTOR_PREFIX()                    // jump table (see Section 2) 
5.   ...  some initialisation 
6.   SET_EGGTIMER (CHAN_EGGTIMER, LED_Timeout_Tick); 
7.   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 
8.   CHAN_OUT (CHAN_DATA_0, Data_0);  // first output 
9.   while (TRUE) 
10.   { 
11.     ALT();                            // this is the needed ”PRI_ALT” 
12.       ALT_EGGREPTIMER_IN (CHAN_EGGTIMER); 
13.       ALT_EGGREPTIMER_IN (CHAN_REPTIMER); 
14.       ALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 
15.       ALT_CHAN_IN        (CHAN_DATA_2, Data_2); 
16.       ALT_ALTTIMER_IN    (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 
17.     ALT_END(); 
18.     switch (g_ThisChannelId) 
19.     { 
20.       ...  process the guard that has been taken, e.g. CHAN_DATA_2 
21.       CHAN_OUT (CHAN_DATA_0, Data_0); 
22.     }; 
23.   } 
24. }

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT

http://www.teigfam.net/oyvind/pub/pub_details.html#NewALT


1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Autro
nica



1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

Autro
nica



1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed 

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed 
▸ Formal model gave us roles and protocol elements

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica



FORMAL MODELING

1:
n

1:n

PRIMARY 
Autro
Safe

Autro
FieldBus

SECONDARY 

as STANDBY
as ACTIVE

Autro
Safe

AL_Com+
I/O Module

Two BN-180 AutroKeepers control loop access

Detection 
Loop

BSD-310 
Loop 

control 
modules

BSD-310 
Loop 

control 
modules

11

1213

14
15

16 11

12

OUT          IN

IN         OUT
15

16

OUT           IN
13

14

IN           OUT

9

10

9

10

T:\projects2009\850047JAN09 Autrosafe 4.1\Prosjektmappe\04_Spesifikasjoner\04_5_AutroKeeper\001 AHA-180\341 System drawing for data sheet.vsd

AL_Com+
I/O Module

(if remote)

▸ Like, modeling of roles
▸ Safe, not simultaneous dual access of detector loop
▸ Always one side connected
▸ No oscillations
▸ Keeps track of the sanity and possibilities of each side
▸ Switches over in milliseconds when needed 
▸ Formal model gave us roles and protocol elements

produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf

Also from real life

WITH CSP & FDR4, PROMELA & SPIN ETC.

Autro
nica

http://produkt.autronica.no/fileshare/filArkivRoot/produkt/pdf/dokumentasjon/bn180_cn.pdf
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CHANNELS «PROTECT» THREADS / PROCESSES / TASKS 

▸ They (and the «process model») help with  
reasoning about the SW architecture

▸ At «link layer» (channels)

▸ At «session layer» (interface with client, server etc.)

▸ At application layer (talking with another thread’s  
application layer)

▸ Keeping local state as consistent as possible!

▸ Avoiding, to receive (and send) messages  
that must be handled «later»
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▸ This lecture 
▸ Standard picture quality, all build steps 

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf 
▸ Full quality, but each page only once, no  build steps (around 70 MB) 

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf 
▸ This course 

NTNU, TTK4145 Sanntidsprogrammering (Real-Time Programming) http://
www.itk.ntnu.no/fag/TTK4145/information/  

▸ My blog notes 
 http://www.teigfam.net/oyvind/home/technology/ 

http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag.pdf
http://www.teigfam.net/oyvind/pub/NTNU_2018/foredrag_full.pdf
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.itk.ntnu.no/fag/TTK4145/information/
http://www.teigfam.net/oyvind/home/technology/
http://www.teigfam.net/oyvind/me/email.html
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