
p
•A"

COVER

ANTENNAS:

F WIRFI FSS
J N A L CHAIN pg52

JUNE §,1996

Table of Contents pg 4
Out in Front pgi9
Powerline
communication pg 71
3-D audio pg 87
Design Ideas pg 103
Whose fault is it
anyway? pg 127
Capacitor amplifier
reduces ripple with­
out dc loss pg 137
DCT scaling enables
universal MPEG
decoder pg 147
An event scheduler
for control
applications pg 155
Ping-Pong scheme
uses semaphores to
pass dual-port-mem­
ory privileges pgl79
Power Sources
Showcase pgi9l
David Brubaker pg 257
Jack Ganssle pg 261

DILBERT

A CAHNERS PUBLICATIOM

DESIGN FEATURE

Ping-Pong scheme
uses semaphores to pass

dual-port-memoty privileges
OYVIND TEIG, AUTRONICA AS

During the last few years, the
price of dual-port memory
has dropped to a level that
makes it feasible for use in
embedded systems. Using a
dual-port RAM seems attrac­
tive, but you must know
how to use this RAM proper­
ly. The two processors, one
on each side of the dual-port
RAM, cannot just read and
write to the dual-port RAM
at any time. To help the designers handle this problem, most
dual-port RAMs have internal semaphores. Semaphores are
flags that only one processor at a time can own.

These semaphores are only basic building blocks. You
must also implement a scheme that allows data to safely pass
from one processor to the other. Several schemes are possi­
ble. In one scheme, the dual-port RAM itself could hold a
state variable for use during the processors' arbitration.
Another scheme is to guarantee that the other processor
reads and modifies the data within a tight time limit.

However, a third possible scheme uses no state informa­
tion inside the dual-port RAM area and does not depend on
time. This scheme uses three of the usual eight hardware
semaphores, and the two processors can differ in processing
power and speed. The processors on each side pass through
simple state machines with only one possible next state. This
"Ping-Pong" approach lets a privilege continuously pass
back and forth between the processors.

Ping-Pong scheme passes privileges
This scheme describes a privilege that passes between the

processors (Figure 1). A processor can hold the privilege as
long as it wants to. When a processor has the privilege, the
processor is free to do whatever it wants with the buffers. The
scheme uses three semaphores (A, B, and C) to pass the priv­
ilege. Figure 2 shows a complete privilege-passing sequence.

Numerous schemes for passing data between
processors and dual-port memory are possi­
ble. However, a Ping-Pong scheme uses just

three semaphores, uses no state information
inside the dual-port memory, and does not

depend on time.

Each processor has the
privilege three times, result­
ing in a maximum of six syn­
chronous transmissions. A
processor that owns two
semaphores has the privi­
lege. The processor that
wants to pass the privilege to
the other processor does so
by freeing the oldest owned
semaphore.

You can use any register-

FIGURE 1

• < - >

o-

PROCESSOR1

< V ^ >

O-

-<rJ>

BUFFER 1 ^ ^

BUFFER 2

SEMAPHORE A

SEMAPHOREB

SEMAPHORE C

-o

PROCESSOR 2

H e ^ o

< v ^ 3 -

< - > - -O

< ^ -o

A Ping-Pong scheme uses three semaphores (A, B, and C) to
pass dual-port-memory privileges between processors 1 and
2.

EDNJUNE6, 1996 ' 179

DESIGN FEATURE

SEMAPHORES AND DUAL-PORT MEMORY

or protocol-based scheme to interpret
the buffers, and you can or cannot
overwrite data. Also, the scheme pro­
tects any number of buffers. The
scheme is fast, because a processor has
only to free one semaphore and poll for
the next between any communication.
The communication does not dead­
lock, because the scheme acquires and
releases the semaphores in correct
order.

This simple solution was not easy to
derive. You cannot use a single sema­
phore alone, because it only protects This sequence shows
the data and gives no synchronization Pmg-Pong scheme.
or direction indication. In a single-semaphore scheme, any
processor, including the processor that just released a sema­
phore, could acquire and receive a released semaphore. Sim­
ilarly, you cannot implement the communication with only
two semaphores. However, a scheme with three semaphores
does not let a processor acquire and then release the same
semaphore, acquire any two semaphores after each other, or
release any two semaphores after each other. The sequence
of processor 1 is "free-get-free-get-free-get" of semaphores A,
B, and C.

You must assure power-up consistency between the two
processors. You can accomplish this using a simultaneous
acquire of the needed semaphores and a time-out before the
sequence starts.

The following analogy helps to explain the scheme. Con­
sider two people wanting to share an ice-cream cone. They

Power-up

Processor 1:
Processor 2:

Repeated forever:

Processor 1:
Processor 2:

Processor 1:
Processor 2:

Processor 1:
Processor 2:

A,B,Cfree

owns A, B:
owns C:

owns B, C:
owns A:

owns C, A:
owns B:

get A and B
getC

read, write buffer

read, write buffer

read, write buffer

FIGURE 2

wait 1 second
wait 1 second

free A
get A (poll)

free B
get B (poll)

free C
get C (poll)

get C (poll)
read, write buffer free C

get A (poll)
read, write buffer free A

get B (poll)
read, write buffer free B

FIGURE 3

COMMAND[0] jT

A

1 PROCESSOR 1

N ^ ^ / \

•

DUALPORT]
RAM J

REPLY[0]

\
\

AFTER INITIALIZATION:
SEMAPHORE A,B

A. COMMANDfl]

\ REPLY[1]\

' r j V I

(PROCESSOR 2 J

/ / /
AFTER INITIALIZATION:
SEMAPHOREC

The command-flow diagram shows that each processor com­
municates with the dual-port RAM using three command
channels. The memory replies to each processor using three
reply channels.

180 - EDN JUNE 6, 1996

the passing of privileges between processors 1 and 2 using the

could use three balls to help them share it, one red, one blue,
and one green, all initially lying on a table. They have to
agree on the ball color sequence (r-b-g-r-b-g, etc), and who
gets the first lick. Whoever licks the ice-cream cone must
hold two balls.

A simulation example
The following Occam program simulates this Ping-Pong

scheme. (Occam is a registered trademark of SGS-Thomson
Microelectronics, formerly, Inmos.) Occam-2 is a language
that supports parallel processes, making the real-time sched­
uler invisible and unreachable. The strongly typed language
has a set of rules that, with the lack of pointers and dynam­
ic memory handling, make programming virtually fool­
proof. This language is small and easy to learn. Like the real­
time parts of Ada, Occam-2 is based on the CSP-notation
(Communicating Sequential Processes, a formal theory
developed by CAR Hoare). The following is the main part of
the program:

PROC Test.DualPort (CHAN OF SP fs, ts, []INT mem)
... PROTOCOLS

VAL Ticks.OneSec.LowPri IS 15625:

INT bufferOfDualPort:
#PRAGMA SHARED bufferOfDualPort — This breaks an occam rule

VAL NoOfProcessors IS 2:
VAL NoOfSema IS 3:

PROC Delay
PROC DualPortRam
PROC Processor

[NoOfProcessors][NoOfSema]CHAN OF Command command:
[NoOfProcessors][NoOfSema]CHAN OF Reply reply:
SEQ
bufferOfDualPort := 0
PAR

DualPortRam (command, reply)
Processor (0, (0,1], command[0], reply[0]}
Processor (1, [2], command[l], reply[l])

The code listing is folded. All of the bold-faced text lines
beginning with three dots are folds. This fold crease repeats
as a heading at the place where the contents of the fold are
present. Occam uses strict indenting of two spaces to define
blocks of code.

A single INT, whose privilege to own passes between the
two processors, simulates the dual-port RAM's data space.
Occam supports channels (using the CHAN construct) and
protocols (using the PROTOCOL construct). All communi­
cation between parallel processes (using the PAR construct)
occurs over synchronous, unbuffered, unidirectional chan-

DESIGN FEATURE

SEMAPHORES AND DUAL-PORT MEMORY

nels. Occam has no semaphores, because process encapsula­
tion in servers share resources. Yet, the purpose of this pro­
gram is to simulate a shared buffer and semaphores. Thus, to
create the shared buffer, you must break an Occam rule with
the #PRAGMA SHARED compiler directive.

Figure 3 shows a command-flow diagram of the main pro­
gram listing. Each processor communicates with the dual-
port RAM through three command channels (one for each
semaphore), and the RAM replies over three reply channels
(one for each semaphore). This scheme corresponds to hav­
ing a separate address for each query to a real dual-port RAM.

The following code defines the Occam protocols:

PROTOCOLS
PROTOCOL Command IS BOOL:
VAL AskForGrant IS TRUE:
VAL ToRelease IS FALSE:

PROTOCOL Reply IS BOOL:
VAL Granted IS TRUE:
VAL Denied IS FALSE:

Both are simple protocols, but Occam also supports variant
protocols, which are user-defined protocol formats.

The following code shows the time aspect of Occam:

... PROC Delay
PROC Delay (VAL INT Ticks)

INT time:
TIMER clock:
SEQ

clock ? time
clock ? AFTER time PLUS Ticks

TIMER is a primitive data type, and the basic unit is a tick (1
ixsec on high-priority processes and 64 irsec on low-priority
processes). This procedure is necessary for the optional time
delay.

The DualPortRam code is as follows:

PROC DualPortRam
PROC DualPortRam ([] []CHAN OF Command command,

[] nCHAN OF Reply reply)

[NoOfSema]BOOL sema:
VAL SemaFree IS FALSE:
VAL SemalnUse IS TRUE:
SEQ

SEQ 1 = 0 FOR SIZE sema
sema [i] := SemaFree

Process processor commands and reply

The most interesting thing in this code is the CHAN para­
meters. Both command and reply are 2-D arrays of channels.
The dimensions represent the two processors and three sem­
aphores. The Occam compiler assures that there is only one
sender and one receiver per channel.

The following code handles the processor queries.
Observe that the question mark (?) passively waits for data
on a channel, and the exclamation mark (!) sends data over
a channel whenever a receiver is ready for the data:

... process processor commands end reply
VAL NextALT IS [1,0,1]:
INT processor:
SEQ
processor := 0
WHILE TRUE
change := EALSE
PRI ALT p = 0 FOR NoOfProcessors
PRI ALT s = 0 FOR NoOfSema
BOOL cmd:
command [NexcALTfp+processor]][s] ? cmd
SEQ
thisSema IS sema[s]:
IF
cmd = AskForGrant
reply. IS reply [NexCALTIp+processor]]Is]:
IF
thisSema = SemalnUse
reply. ! Denied

thisSema = SemaFree
SEQ
reply. ! Granted
thisSema := SemalnUse

cmd = ToRelease
thisSema := SemaFree

processor := NextALTEp+processor] — Fair scheduling of processors

The above code implements a typical server, one that sits idly
waiting for a command coming from any processor (PRI ALT
p=0 FOR NoOfProcessors) and going to any semaphore (PRI
ALT s=0 FOR NoOfSema). The code actually implements
waiting for six channels (2x3). The following command sets
up six times: command [NextALT[p+processor]][s] ? cmd.
The code processes the first received command. If the sema­
phore is in use, the DualPortRam replies a denial. If the sem­
aphore is free, the DualPortRam grants the semaphore and
relocks it. The DualPortRam does not know which processor
is using the semaphore; it knows only the binary state. Note
that decimal points in Occam names mean nothing more
than an underscore in C names. For example, "reply" and
"reply." are two distinct names.

Whenever one processor has been served, the other

FIGURE 4 Processor:
' INT iOfNextSema:

SEQ
iOfNextSema := Next UOfLastSema)
command [iOfNextSema] 1 AskForGrant''
BOOL thisReply:
SEQ
reply (iOfNextSema] ? thisReply - ^
IF
thisReply = Granted
SEQ
noOfSemaOwned := 2
iOfLastSema := iOfNextSema

thisReply = Denied
IF
IProc = 0
Delay (Ticks.OneSec.LowPri

IProc = 1
/ 10)

Delay (Ticks.OneSec.LowPri)BOOL

DualPortRam:
BOOL cmd:

r command [NextALTIp+processorI][s] ? cmd
SEQ
thisSema IS sema(s):
IF
cmd = AskForGrant
reply. IS reply

(NextALTIp+processor)[s]:
—^_ IF

V. ̂ ""^-^^^ thisSema = SemalnUse
^•v. — reply. ! Denied

^"v. thisSema = SemaFree
^ \ . SEQ

^\reply. ! Granted
thisSema := SemalnUse

cmd = ToRelease
thisSema := SemaFree

processor := NextALTIp+processor)

Side-by-side Processor and DualPortRam code show the essence of the Ping-Pong communication scheme.

182 • EDNJUNE6, 1996

DESIGN FEATURE

SEMAPHORES AND DUAL-PORT MEMORY

processor is placed first in the ALT queue of passive waiting.
Without this explicit control of the ALT fairness, you must
introduce a delay in the processors, so that they can't imme­
diately ask again for a semaphore. This repeat query would
cause the releasing semaphore query never to be served.
With the fair scheduling, the processors do not need this
delay. No good system design should rely on inserted repeat­
ed delays.

The following is the processor code:
PROC Processor

PROC Processor (VAL INT IProc,
VAL []INT Init,
[]CHAN OF Command command,
[J CHAN OF Reply reply)

INT FUNCTION Prev (VAL INT This) IS ((This + (NoOfSema-1)) REM (SIZE
command)):

INT FUNCTION Next (VAL INT This) IS ((This + 1) REM (SIZE command)):

INT iOfLastSema, noOfSemaOwned, myLastBufferValue:
SEQ

Ask for initial semaphores
Init myLastBuf ferValue

Delay (Ticks.OneSec.LowPri)
Repeatedly hold and release buffer

The semaphores are initialized according to the following
Init array:

Ask for initial semaphores
SEQ i = 0 FOR SIZE Init
VAL I IS Init [i]:
BOOL thisReply:
SEQ

corrrmand [I] ! AskForGrant
reply [I] ? thisReply
IF
thisReply - Granted

SKIP
thisReply = Denied

CAUSEERRORO
noOfSemaOwned := SIZE Init

The buffer value now needs to be initialized:

Init myLastBufferValue
IF
noOfSemaOwned = 2
myLastBufferValue := 0

noOfSemaOwned = 1
myLastBufferValue := 1

The real processor code comes next:

Repeatedly hold and release buffer
iOfLastSema := Init [(SIZE Init) - 1]
WHILE TRUE

IF
noOfSemaOwned = 1

Acquire a second semaphore = receive buffer
noOfSemaOwned = 2

SEQ
Owns buffer: Read, increment, write and test buffer
Release first of two semaphores = send buffer

As you can see in this code, one processor has time to serve
the dual-port RAM once/sec; the other, 10 times/sec. This
means that the fastest processor will perform nine queries
with a denial for each success. Full speed with no delay caus­
es the buffer value to increment to 10,000 in 3 sec, includ­
ing the original 1-sec delay.

Whenever a processor owns two semaphores, the proces­
sor can do whatever it wants with the buffer. A system could
handle several buffers through this three-semaphore scheme
and could also assign directions to the semaphores. With
three buffers, there could be one semaphore for each direc­
tion (for command/reply) and one for bidirectional data
(register-based). Our test program tests to see whether the
other processor has incremented the buffer's value by 1 and
then increments the value and sends it on.

Owns buffer: Read, increment, write and test buffer
IF
bufferOfDualPort = myLastBufferValue

SKIP
bufferOfDualPort <> myLastBufferValue

CAUSEERROR()
myLastBufferValue := bufferOfDualPort + 2
bufferOfDualPort := bufferOfDualPort + 1

The program sends the buffer by releasing the oldest of the
two semaphores:

Release first of two semaphores = send buffer
command [Prev (iOfLastSema)] ! ToRelease
noOfSemaOwned := 1

Figure 4, which shows adjacent Processor and DualPort-
Ram code, illustrates some of the communication elements.

All of the code is complete, is fully tested, and is working.
(Code to report to the screen has been stripped off.) The
Occam code was tested on an SGS-Thomson transputer PC
plug-in board. Occam is now also available to nontransput-
er users. A system called SPOC (Southampton Portable
Occam Compiler) generates ANSI-C. Also, a compiler called
KROC (Kent Retargetable Occam Compiler) now generates
code that runs on a Digital Equipment Alpha running OSF
3.0 and a SPARC running SunOS/Solaris system. You can
also run Occam on PCs under a DOS extender. For further
information, try the following www sites: <url:http://
www.hensa.ac.uk/parallel/occam/documentation/> or
<url:http: www.hensa.ac.uk/parallel/occam/projects/
occam-for- all/kroc/>.

The following code repeatedly asks for a second sema­
phore. If the DualPortRam denies, the code goes into a wait­
ing mode. This waiting is unnecessary. However, you can A u t h o r ' s b i o g r a p h y
look upon this time as time when the processor can do
things other than Ping-Pong the data back and forth.

Acquire a second semaphore — receive buffer
INT iOfNextSema:
SEQ
iOfNextSema := Next (IOfLastSema)
command [iOfNextSema) ! AskForGrant
BOOL thisReply:
SEQ
reply [iOfNextSema] ? thisReply

Oyvind Teig is a senior development engineer at Autronica As
(Trondheim, Norway). He works on the design and programming
of real-time systems and holds an MSC degree from the Norwe­
gian Institute of Technology.

IF
thisReply = Granted
SEQ
noOfSemaOwned := 2
iOfLastSema := iOfNextSema

thisReply = Denied
IF
IProc = 0
Delay (Ticks.OneSec.LowPri / 10)

IProc = 1
Delay (Ticks.OneSec.LowPri)

VOTE
Please use the Information Retrieval Service card to rate this article
(circle one):

High Interest Medium Interest Low Interest
570 571 572

184 - EDN JUNE 6, 1996

http://
http://www.hensa.ac.uk/parallel/occam/documentation/
http://www.hensa.ac.uk/parallel/occam/projects/

