
Side 1 av 27

xchan_occ 05.10.2023, 20:33

--** an occam model of Oyvind's 'XCHAN' (CPA 2012).
--
-- We model an XCHAN (buffered or unbuffered) with an occam process:
--
-- [@text
-- :
-- -----------------------
-- ready | |
-- ----<----| | out
-- | xchan (n) |---->----
-- ---->----| |
-- in | |
-- -----------------------
--]
--
-- Application messages flow from 'in' to 'out'.
-- The device signals [@code TRUE] down the 'ready' channel when, and only
-- when, it will accept input: this signal must be taken by a writing
-- process before sending anything.
-- Events on 'ready' and 'in' strictly alternate, starting with 'ready'.
-- The buffering capacity is 'n' (>= 0).
--
-- A reading process simply reads from the output channel of the device.
-- [@em Warning:] a current implementation restriction means reading from
-- a [@em zero-buffered] XCHAN must be done twice, discarding the first item.
--
-- A writing process has three choices: an [@em asynchronous] write (that
-- immediately returns with an indication of whether the write succeeded),
-- a [@em synchronous] write (that does not return until the write succeeds),
-- or [@code ALT] on the 'ready' channel and other events (until the 'ready'
-- is signalled and, then, write the message).
--
-- This module provides two versions of XCHAN: [@ref xchan.a] and
-- [@ref xchan.b].

Side 2 av 27

xchan_occ 05.10.2023, 20:33

-- They differ only in behaviour if their buffering capacity is set
-- to zero: [@ref xchan.b] is better (but slightly more expensive).
--
-- The structure of this module is described in [@ref MODULE.STRUCTURE].

--* First, the data type carried by the XCHAN ([@ref STUFF]) is declared,
-- together with a constant of that type ([@ref DUMMY.STUFF]) (which can have
-- any value).
-- Because occam-pi does not currently support [@em generic] types, these must
-- be edited to the type required by the application using the XCHAN.
--
-- Next come the [@em basic] mechanisms for writing to XCHANs:
-- [@ref xchan.async.write], [@ref xchan.blocking.write] and [@ref PATTERN.A].
-- Beware that these do not work for the second [@em (better)] implementation
-- of an [@em unbuffered] XCHAN - see below.
--
-- The simplest XCHAN implementation is for a buffered XCHAN with capacity 1
-- ([@ref xchan.one]) and this comes next.
--
-- Then follow a series of [@em blocking buffer] processes
-- ([@ref buffer.one], [@ref buffer.a], [@ref buffer.b], [@ref buffer.c]
-- and [@ref buffer.d]).
-- These are [@em private] processes, used in the implementation below.
--
-- A buffered XCHAN with capacity greater than 1 is just a [@em one-place]
-- XCHAN ([@ref xchan.one]) pipelined into a blocking buffer ([@ref buffer.d]),
-- that provides the rest of the capacity.
-- This is wrapped into ([@ref xchan.buffered.a]), which is a buffered XCHAN
-- with capacity greater than or equal to 1.
--
-- A modest optimisation on the above follows: [@ref xchan.buffered.b].
-- This is preceded by two [@em private] support processes:
-- [@ref buffer.one.bool] and [@ref x.ring.buffer].
--

Side 3 av 27

xchan_occ 05.10.2023, 20:33

-- Now follow two implementations for an unbuffered XCHAN:
-- [@em simple unbuffered] ([@ref xchan.zero.a]) and
-- [@em better unbuffered] ([@ref xchan.zero.b]).
-- The latter requires small changes in the mechanisms for writing to it:
-- [@ref xchan.async.write.b], [@ref xchan.blocking.write.b]
-- and [@ref PATTERN.B].
--
-- Unfortunately, both the above unbuffered XCHAN implementations require
-- [@em extended output]: a feature not yet supported by occam-pi.
-- There is a simple [@ref WORK.AROUND], given next by [@ref xchan.zero.a2]
-- and [@ref xchan.zero.b2] (for the simple and better behaviour,
-- respectively).
-- However, these require a change to the way the unbuffered XCHAN is read
-- ([@ref xchan.zero.sync.read] or [@ref PATTERN.C]).
--
-- [@em Note:] the goal is to have the same mechanisms for reading and writing
-- XCHANs, regardless of whether they are buffered or unbuffered.
-- If occam-pi supported [@em extended output], this could be achieved:
-- reading would be an [@em occam primitive] read ([@code ?]),
-- from the output channel of the XCHAN, and
-- writing would use either [@ref xchan.async.write.b],
-- [@ref xchan.blocking.write.b] or [@ref PATTERN.B].
--
-- As things stand, an [@em occam primitive] read ([@code ?]) can only be
-- used for [@em buffered] XCHANs but the [@em read-discard-read-keep]
-- pattern ([@ref xchan.zero.sync.read] or [@ref PATTERN.C]) is needed for
-- [@em unbuffered] XCHANs.
--
-- For writing, [@ref xchan.async.write.b], [@ref xchan.blocking.write.b] or
-- [@ref PATTERN.B] can be used for [@em all] XCHANs.
-- However, [@ref xchan.async.write], [@ref xchan.blocking.write] or
-- [@ref PATTERN.A] are marginally more efficient for [@em buffered] XCHANs
-- and for the first version [@em unbuffered] XCHANs ([@ref xchan.zero.a2],
-- [@em simple behaviour]), but cannot be used the second version
-- ([@ref xchan.zero.b2], [@em better behaviour]).

Side 4 av 27

xchan_occ 05.10.2023, 20:33

--
-- Finally, [@ref xchan.a] and [@ref xchan.b] are processes implementing
-- XCHANs of any capacity (i.e. [@em buffered] or [@em unbuffered]),
-- offering different implementation choices taking into account
-- the points in the last two paragraphs.
-- Please see their documentation for how they [@em must] be used.
--
VAL INT MODULE.STRUCTURE IS 0:

--* occam-pi currently has no generic types, so we must define code to operate
-- on some specific type. To build an XCHAN for another type, change this
-- declaration to what you want. See also [@ref DUMMY.STUFF].
--
DATA TYPE STUFF IS REAL64:

--* This is currently needed to support reading from an unbuffered XCHAN
-- (see [@ref WORK.AROUND], [@ref xchan.zero.a2] and [@ref xchan.zero.b2]).
--
-- [@em Any] value of the [@ref STUFF] type may be chosen for this constant.
-- [@em Implementor's note:] choose a value with minimal memory footprint.
--
VAL STUFF DUMMY.STUFF IS 0.0:

--* This is an [@em asynchronous] write for an XCHAN. It never blocks and
-- returns with an indication of whether it was able to perform the write.
--
-- Commonly, this is the first thing tried by a writing process: if it
-- fails, then the [@code ALT]ing pattern on the [@em ready] channel
-- may be engaged ([@ref PATTERN.A]) rather than continued attempts
-- to write using this process.
--
-- @param data This is the message to be written.

Side 5 av 27

xchan_occ 05.10.2023, 20:33

-- @param success This indicates whether the write happened.
-- @param ready.xchan This is the [@em ready] channel from the XCHAN device.
-- @param to.xchan This is the [@em input] channel to the XCHAN device.
--
PROC xchan.async.write (VAL STUFF data, BOOL success,
 CHAN BOOL ready.xchan?, CHAN STUFF to.xchan!)
 PRI ALT
 BOOL any:
 ready.xchan ? any
 SEQ
 to.xchan ! data
 success := TRUE
 SKIP
 success := FALSE
:

--* This is a [@em synchronous] write for an XCHAN. It will block until
-- the XCHAN is able to take the message.
--
-- This procedure would not normally be used (since a primitive channel
-- or conventional blocking FIFO process would be more efficient).
-- It is included for completeness.
--
-- @param data This is the message to be written.
-- @param ready.xchan This is the [@em ready] channel from the XCHAN device.
-- @param to.xchan This is the [@em input] channel to the XCHAN device.
--
PROC xchan.blocking.write (VAL STUFF data, CHAN BOOL ready.xchan?,
 CHAN STUFF to.xchan!)
 BOOL any:
 SEQ
 ready.xchan ? any
 to.xchan ! data
:

Side 6 av 27

xchan_occ 05.10.2023, 20:33

--* This is the third choice for writing to an XCHAN: wait for the device
-- to become [@em ready], whilst servicing other events. For example:
--
-- [@code
-- :
-- -- Pattern 'A'
-- INITIAL BOOL wanting.to.write IS TRUE:
-- WHILE wanting.to.write
-- ALT -- or PRI ALT
-- BOOL any:
-- ready.xchan ? any
-- SEQ
-- to.xchan ! data
-- wanting.to.write := FALSE
-- ... process other guards (which may change 'data')
--]
--
-- The writer may adopt this pattern at any time: there is no obligation
-- to try an [@ref xchan.async.write] first.
--
-- Note that there is no obligation on the writer to send the data it
-- originally had; it is free to discard that and send, for example, data
-- acquired since it started waiting.
--
VAL INT PATTERN.A IS 0:

--* This is a [@em one-place buffered] XCHAN process.
--
-- Its behaviour is exactly that of an [@em auto-prompter], a common occam
-- idiom.
--
-- @param ready This is signalled (with [@code TRUE]) when, and only when,

Side 7 av 27

xchan_occ 05.10.2023, 20:33

-- data on the [@ref in] channel can be taken. This signal [@em must]
-- be taken before data may be sent.
-- @param in Data input
-- @param out Data output
--
PROC xchan.one (CHAN BOOL ready!, CHAN STUFF in?, out!)
 WHILE TRUE
 STUFF x:
 SEQ
 ready ! TRUE
 in ? x
 out ! x
:

--* To build a [@em buffered] XCHAN process with application-defined capacity,
-- we just need a [@em one-place buffered] XCHAN process ([@ref xchan.one])
-- pipelined with a standard blocking buffer (with capacity one less than
-- required for the [@em buffered] XCHAN). First, we build the latter.
--
VAL INT BUFFERED.XCHAN.CAPACITY IS 0:

--* This is a standard [@em one-place blocking buffer], commonly known as
-- an [@em id-process]. It just copies input to output.
--
-- @param in Data input
-- @param out Data output
--
PROC buffer.one (CHAN STUFF in?, out!)
 WHILE TRUE
 STUFF x:
 SEQ
 in ? x
 out ! x

Side 8 av 27

xchan_occ 05.10.2023, 20:33

:

#IF FALSE

--* This is a standard [@em blocking buffer] process with application-defined
-- capacity, implemented as a pipeline of [@em one-place blocking buffers]
-- ([@ref buffer.one]). For this implementation, the capacity must be more
-- than one.
--
-- [@em Warning:] this process does not compile (because occam-pi runtime
-- sized channel arrays currently have to be built from arrays of mobile
-- channel-ends - see [@ref buffer.b]). It is presented here for
-- easier understanding of its code (and because occam-pi will [@em eventually]
-- compile it).
--
-- @param max The maximum capacity of this buffer ([@code max >= 1]).
-- @param in Data input
-- @param out Data output
PROC buffer.a (VAL INT max, CHAN STUFF in?, out!)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 buffer.one (in?, out!)
 TRUE -- DEDUCE: max >= 2
 [max - 1]CHAN STUFF c: -- runtime sized channel array (will not compile)
 PAR
 buffer.one (in?, c[0]!)
 PAR i = 0 FOR max - 2
 buffer.one (c[i]?, c[i+1]!)
 buffer.one (c[max - 2]?, out!)
:

#ENDIF

Side 9 av 27

xchan_occ 05.10.2023, 20:33

--* To implement [@ref buffer.two.plus.a] in a way that compiles, we must
-- build the channel array from mobile channel-ends. This declares the
-- needed mobile channel type (a trivial structure with one field).
-- This is a [@em private] declaration, used only for the implementation
-- of [@ref buffer.b].
--
CHAN TYPE STUFF.CHAN
 MOBILE RECORD
 CHAN STUFF c?:
:

--* This is a standard [@em blocking buffer] process with application-defined
-- capacity, implemented as a pipeline of [@em one-place blocking buffers]
-- ([@ref buffer.one]). This implementation will compile and run correctly.
--
-- @param max The maximum capacity of this buffer ([@code max >= 1]).
-- @param in Data input
-- @param out Data output
--
PROC buffer.b (VAL INT max, CHAN STUFF in?, out!)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 buffer.one (in?, out!)
 TRUE -- DEDUCE: max >= 2
 INITIAL MOBILE []STUFF.CHAN! c0 IS MOBILE [max]STUFF.CHAN!:
 INITIAL MOBILE []STUFF.CHAN? c1 IS MOBILE [max]STUFF.CHAN?:
 SEQ
 SEQ i = 0 FOR max
 c0[i], c1[i] := MOBILE STUFF.CHAN -- connect the ends
 PAR

Side 10 av 27

xchan_occ 05.10.2023, 20:33

 STUFF.CHAN! x IS c0[0]:
 buffer.one (in?, x[c]!)
 PAR i = 0 FOR max - 3
 STUFF.CHAN? x IS c1[i]:
 STUFF.CHAN! y IS c0[i + 1]:
 buffer.one (x[c]?, y[c]!)
 STUFF.CHAN? x IS c1[max - 3]:
 buffer.one (x[c]?, out!)
:

--* We can build a buffer process in a more serial way (that will be much
-- more efficient if implemented by software). In concept, it is slightly
-- more complicated (but only [@em slightly]) than a pipeline of one-place
-- blocking buffers. It is taken from the [@em "Concurrency Design and
-- Practice"] course at the University of Kent.
--
VAL INT BUFFER.SERIAL IS 0:

--* This is a standard [@em blocking buffer] process with application-defined
-- capacity, implemented as classic [@em ring buffer]. However, this needs
-- a [@em request] channel that the reader process must signal before reading.
--
-- @param max The maximum capacity of this buffer ([@code max >= 1]).
-- @param in Data input
-- @param out Data output
-- @param request The reader must signal (value irrelevant) on this before reading.
--
PROC buffer.c (VAL INT max, CHAN STUFF in?, out!, CHAN BOOL request?)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 WHILE TRUE -- this case does not need separate coding,

Side 11 av 27

xchan_occ 05.10.2023, 20:33

 STUFF x: -- since its logic is implemented by the general
 SEQ -- code in the next condition; it's added here
 in ? x -- to show the logic for this trivial case (and
 BOOL any: -- for efficiency).
 request ? any
 out ! x
 TRUE -- DEDUCE: max >= 1
 INITIAL MOBILE []STUFF hold IS MOBILE [max]STUFF:
 INITIAL INT size IS 0: -- current size of buffer
 INITIAL INT lo IS 0: -- index of oldest item in buffer (if size > 0)
 INITIAL INT hi IS 0: -- index of next free slot (if size < max)
 WHILE TRUE
 ALT
 (size < max) & in ? hold[hi]
 SEQ
 hi := (hi + 1)\max
 size := size + 1
 BOOL any:
 (size > 0) & request ? any
 SEQ
 out ! hold[lo]
 lo := (lo + 1)\max
 size := size - 1
:

--* This is a standard [@em blocking buffer] process with application-defined
-- capacity, implemented as classic [@em ring buffer]. It eliminates the
-- need for a [@em request] channel by pipelining [@ref buffer.c] with an
-- [@em auto-prompter] (which is, of course, [@ref xchan.one]).
--
-- @param max The maximum capacity of this buffer ([@code max >= 1]).
-- @param in Data input
-- @param out Data output
--

Side 12 av 27

xchan_occ 05.10.2023, 20:33

PROC buffer.d (VAL INT max, CHAN STUFF in?, out!)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 buffer.one (in?, out!)
 TRUE -- DEDUCE: max >= 2
 CHAN BOOL request:
 CHAN STUFF c:
 PAR
 buffer.c (max - 1, in?, c!, request?)
 xchan.one (request!, c?, out!)
:

--* This is a [@em one-buffered] XCHAN process with application-defined capacity.
--
-- It is built from a [@em one-place buffered] XCHAN process ([@ref xchan.one])
-- pipelined with a standard blocking buffer ([@ref buffer.d]).
--
-- @param max The maximum capacity of this XCHAN ([@code max >= 1]).
-- @param ready This is signalled (with [@code TRUE]) when, and only when,
-- data on the [@ref in] channel can be taken. This signal [@em must]
-- be taken before data may be sent.
-- @param in Data input
-- @param out Data output
--
PROC xchan.buffered.a (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 xchan.one (ready!, in?, out!)
 TRUE -- DEDUCE: max >= 2
 CHAN STUFF c:

Side 13 av 27

xchan_occ 05.10.2023, 20:33

 PAR
 xchan.one (ready!, in?, c!)
 buffer.d (max - 1, c?, out!)
:

--* [@em Note:] messages passing through [@ref xchan.buffered.a]
-- pass through three hops (for capacities greater than 2).
-- The version originally devised ([@ref xchan.buffered.b]) makes messages
-- pass through only two hops. However, it makes the [@em ready] signal also
-- pass through two hops - so may not be any faster! First, we need an
-- [@em id-process] for those [@em ready] signals ([@ref buffer.one.bool])
-- and, then, a [@em ring buffer] folded with XCHAN code ([@ref x.ring.buffer]).
--
VAL INT OPTIMISED.BUFFERED.XCHAN IS 0:

--* This is a standard [@em one-place blocking buffer], commonly known as
-- an [@em id-process]. It just copies input to output.
--
-- @param in Data input
-- @param out Data output
--
PROC buffer.one.bool (CHAN BOOL in?, out!)
 WHILE TRUE
 BOOL x:
 SEQ
 in ? x
 out ! x
:

--* Standard ring buffer modified to provide an XCHAN ready signal.
--
-- This is a service process for the [@ref xchan.buffered.b] (below).

Side 14 av 27

xchan_occ 05.10.2023, 20:33

-- It should not be used directly by systems.
--
-- There must be an [@ref xchan.one] [@em auto-prompter] driving
-- the [@code prompt] and [@code out] channels.
-- There must be a [@ref buffer.one.bool] [@em id-process] forwarding
-- [@code ready] signals.
--
-- A 'ready' signal is offered if and only if space is available
-- to buffer another item of data. Events 'ready' and 'in' must
-- strictly alternate, starting with 'ready'.
--
-- To write to 'in', a 'ready' signal (forwarded by 'id.bool')
-- must first be accepted by the writer. Disregarding this
-- protocol leads to this process [@code STOP]ping and probable deadlock.
--
-- @param max Size of the buffer (>= 1)
-- @param in Data input
-- @param out Data output
-- @param prompt Reader must prompt for output
-- @param ready Writer must take this signal before writing
--
PROC x.ring.buffer (VAL INT max, CHAN STUFF in?, out!,
 CHAN BOOL prompt?, ready!) -- , error!)
 --
 -- Note: if (#ready! = #in?) and the writer to 'in' follows the required
 -- protocol, all 'ready' signals generated by this process have
 -- been taken by the writer process and the accompanying 'id.bool'
 -- process is waiting for the next 'ready' from here (i.e. the
 -- next 'ready' will not block). This holds in all states of this
 -- process (not just at the start of its loop).
 --
 INITIAL MOBILE []STUFF buffer IS MOBILE [max]STUFF:
 INT lo, hi, size:
 SEQ
 lo, hi, size := 0, 0, 0

Side 15 av 27

xchan_occ 05.10.2023, 20:33

 ready ! TRUE -- DEDUCE: will not block ('id.bool' is waiting)
 WHILE TRUE
 -- INVARIANT: (size < max) <==> (#ready! = #in? + 1)
 -- INVARIANT: (size = max) <==> (#ready! = #in?)
 ALT
 STUFF any:
 (size = max) & in ? any -- protocol violation (by writer)
 SEQ
 -- error ! FALSE -- this error is intended to be fatal
 STOP -- if skipped, a more complex loop invariant is needed
 (size < max) & in ? buffer[hi]
 -- DEDUCE: #ready! = #in?
 -- assume: writer has cleared previous 'ready' from 'id.bool'
 -- (see above note). Otherwise there has been a protocol
 -- violation (which cannot be detected here).
 SEQ
 hi := (hi + 1)\max
 size := size + 1
 IF
 size < max
 ready ! TRUE -- DEDUCE: will not block ('id.bool' is waiting)
 -- DEDUCE: (size < max) AND (#ready! = #in? + 1)
 TRUE
 SKIP -- DEDUCE: (size = max) AND (#ready! = #in?)
 BOOL any:
 (size > 0) & prompt ? any
 SEQ
 out ! buffer[lo]
 lo := (lo + 1)\max
 IF
 size < max
 SKIP -- DEDUCE: (size < max) AND (#ready! = #in? + 1)
 TRUE
 -- DEDUCE: (size = max) AND (#ready! = #in?)
 ready ! TRUE -- DEDUCE: will not block ('id.bool' is waiting)

Side 16 av 27

xchan_occ 05.10.2023, 20:33

 -- DEDUCE: (size = max) AND (#ready! = #in? + 1)
 size := size - 1
 -- DEDUCE: (size < max) AND (#ready! = #in? + 1)
:

--* This is a [@em one-buffered] XCHAN process with application-defined capacity.
--
-- [@em Historical note:] this was the original version (just before CPA 2012).
--
-- @param max The maximum capacity of this XCHAN ([@code max >= 1]).
-- @param ready This is signalled (with [@code TRUE]) when, and only when,
-- data on the [@ref in] channel can be taken. This signal [@em must]
-- be taken before data may be sent.
-- @param in Data input
-- @param out Data output
--
PROC xchan.buffered.b (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
 IF
 max < 1
 STOP -- illegal parameter value
 max = 1
 xchan.one (ready!, in?, out!)
 TRUE -- DEDUCE: max >= 2
 CHAN BOOL a, r:
 CHAN STUFF b:
 PAR
 x.ring.buffer (max - 1, in?, b!, a?, r!) -- , error!)
 xchan.one (a!, b?, out!)
 buffer.one.bool (r?, ready!)
:

--* Next come zero-buffered XCHANs.
--

Side 17 av 27

xchan_occ 05.10.2023, 20:33

VAL INT ZERO.BUFFERED IS 0:

#IF FALSE

--* This is a zero-buffered XCHAN (simple behaviour).
--
-- It fishes for a reader by offering an [@em extended output] ([@code out !!]).
-- When a reader is caught, it fishes for a writer by signalling on [@em ready].
-- When it has caught both, the data is transferred. No buffering is
-- introduced by this process in the connection between its writer and
-- reader.
--
-- Its weakness is that a reader is sought before there is any indication
-- that a write is pending. This is addressed in [@ref xchan.zero.b].
--
-- [@em Warning:] this process will not compile since [@em extended output]
-- is not yet supported by occam-pi. See [@ref xchan.zero.a2] for a
-- work-around.
--
-- @param ready This is signalled (with [@code TRUE]) when, and only when,
-- a reader is committed to read. This signal [@em must] be taken before
-- data may be sent - the sender is guaranteed that the reader will accept.
-- @param in Data input
-- @param out Data output
--
PROC xchan.zero.a (CHAN BOOL ready!, CHAN STUFF in?, out!)
 WHILE TRUE
 STUFF x:
 out !! -- look for a reader (will not yet compile)
 SEQ
 ready ! TRUE -- let the writer know a reader is committed
 in ? x -- the writer delivers (may not be immediate)
 !! x -- reader is committed to take this
:

Side 18 av 27

xchan_occ 05.10.2023, 20:33

--* This is a zero-buffered XCHAN (better behaviour).
--
-- It fixes the weakness noted in the documentation for [@ref xchan.zero.a].
-- However, it requires slightly different logic for an application process
-- that writes to it ([@ref xchan.async.write.b], [@ref xchan.blocking.write.b]
-- and [@ref PATTERN.B]). [@em Note:] these revised processes and pattern
-- may also be used with all other versions of buffered and unbuffered XCHANs
-- (with only a slight overhead cost).
--
-- For a [@em writer] to this process, the values from its [@em ready] channel are
-- significant. This is because this process first fishes for writer by
-- sending a [@code FALSE] signal on [@em ready]. As normal, when and only when the
-- writer has something to send, it waits for a signal on [@em ready].
-- However, if that signal was [@code FALSE], the writer must keep waiting until it
-- gets a [@code TRUE]. All this waiting can, of course, be done whilst processing
-- other events (using [@code ALT]). Meanwhile a writer, by accepting the [@code FALSE],
-- lets this process know that it has something to send and this process then
-- fishes for a [@em reader] (using [@em extended output], [@code out !!]).
-- Once found, the reader is committed and this process now sends [@code TRUE]
-- on [@em ready] to encourage the writer to write something (which need not,
-- of course, be what it originally had to send). The writer writes, this process
-- forwards, the reader reads and no buffering semantics have been introduced.
--
-- The reader from an [@ref xchan.zero.b] just does a normal read, as before.
-- Disregarding the new writer protocol leads to deadlock. Checking
-- that a writer has followed this protocol can be done by a simple
-- visual check of the code (to ensure a write follows, and only follows,
-- a [@code TRUE] on 'ready') or, automatically, by a specialised tool or simple
-- model check.
--
-- [@em Warning:] this process will not compile since [@em extended output]
-- is not yet supported by occam-pi. See [@ref xchan.zero.b2] for a
-- work-around.

Side 19 av 27

xchan_occ 05.10.2023, 20:33

--
-- @param ready This is signalled with [@code TRUE] when, and only when, a reader
-- is committed to read. Prior to that, a [@code FALSE] is signalled that should
-- only be accepted when a writer has something to write. The writer must
-- still wait for the [@code TRUE] signal before writing - when this happens, the
-- writer is guaranteed that the reader will read.
-- @param in Data input
-- @param out Data output
--
PROC xchan.zero.b (CHAN BOOL ready!, CHAN STUFF in?, out!)
 WHILE TRUE
 SEQ
 ready ! FALSE -- taken by a writer who wants to write
 STUFF x:
 out !! -- look for a reader (will not yet compile)
 SEQ
 ready ! TRUE -- let the writer know a reader is committed
 in ? x -- the writer delivers (may not be immediate)
 !! x -- reader is committed to take this
:

#ENDIF

--* This is an [@em asynchronous] write for a [@ref xchan.zero.b]
-- (a zero-buffered XCHAN).
-- It never blocks and returns with an indication of whether it was able
-- to perform the write.
--
-- A writer could simply keep using this process when it has data to send.
-- There will be at least one FALSE result (maybe many) before a TRUE.
-- It is up to the writer whether to keep sending the same data until success
-- or fresh data. When a write has succeeded, the writer can be assured the
-- reader has taken it (or is about to take it).
--

Side 20 av 27

xchan_occ 05.10.2023, 20:33

-- Commonly, this is the first thing tried by a writing process: if it fails,
-- then the [@code ALT]ing [@ref PATTERN.B] on the [@em ready] channel may
-- be engaged (rather than continued attempts to write using this process).
--
-- @param data This is the message to be written.
-- @param success This indicates whether the write happened.
-- @param ready.xchan This is the [@em ready] channel from the XCHAN device.
-- @param to.xchan This is the [@em input] channel to the XCHAN device.
--
PROC xchan.async.write.b (VAL STUFF data, BOOL success,
 CHAN BOOL ready.xchan?, CHAN STUFF to.xchan!)
 PRI ALT
 ready.xchan ? success
 IF
 success
 to.xchan ! data
 TRUE
 SKIP
 SKIP
 success := FALSE
:

--* This is a [@em synchronous] write for an XCHAN. It will block until
-- the XCHAN is able to take the message.
--
-- This procedure would not normally be used (since a primitive channel
-- or conventional blocking FIFO process would be more efficient).
-- It is included here for completeness.
--
-- [@em Note:] the loop in the code is not needed (see the comments).
-- However, if this process is used for writing to buffered XCHANS or the
-- previous version of an unbuffered XCHAN ([@ref xchan.zero.a]), the
-- comments do not apply: there will only be one TRUE signal and this coding
-- still works.

Side 21 av 27

xchan_occ 05.10.2023, 20:33

--
-- @param data This is the message to be written.
-- @param ready.xchan This is the [@em ready] channel from the XCHAN device.
-- @param to.xchan This is the [@em input] channel to the XCHAN device.
--
PROC xchan.blocking.write.b (VAL STUFF data, CHAN BOOL ready.xchan?,
 CHAN STUFF to.xchan!)
 BOOL ok:
 SEQ
 ready.xchan ? ok -- this will be FALSE
 WHILE NOT ok
 ready.xchan ? ok -- this will be TRUE
 to.xchan ! data
:

--* More useful may be the following strategy.
-- When a writer has something to send, listen on the [@em ready] channel
-- from the XCHAN: this lets the zero-buffered channel know that a writer is waiting.
-- Ignore [@code FALSE] [@em readys].
-- When [@code TRUE] is received from [@em ready], send the data.
-- The writer can be assured the reader has committed to take it:
--
-- [@code
-- :
-- -- Pattern 'B'
-- INITIAL BOOL wanting.to.write IS TRUE:
-- WHILE wanting.to.write
-- ALT -- or PRI ALT
-- BOOL ok:
-- ready.xchan ? ok
-- IF
-- ok -- means a reader is waiting
-- SEQ
-- to.xchan ! data

Side 22 av 27

xchan_occ 05.10.2023, 20:33

-- wanting.to.write := FALSE
-- TRUE
-- SKIP
-- ... process other guards (which may change 'data')
--]
--
-- The writer may adopt this pattern at any time: there is no obligation
-- to try an [@ref xchan.async.write.b] first.
--
-- Note that there is no obligation on the writer to send the data it
-- originally had; it is free to discard that and send, for example, data
-- acquired since it started waiting.
--
VAL INT PATTERN.B IS 0:

--* Here are the work-arounds for processes [@ref xchan.zero.a] and
-- [@ref xchan.zero.b] (which do not compile because occam-pi does not yet
-- support [@em extended output]). They require readers to read [@em twice],
-- discarding the first item ([@ref DUMMY.STUFF]).
--
VAL INT WORK.AROUND IS 0:

--* This is a zero-buffered XCHAN (simple behaviour).
--
-- See [@ref xchan.zero.a] for documentation. This process works around the
-- current non-implementation of [@em extended output] in occam-pi by
-- applying the standard transformation (given in
-- [@link https://www.cs.kent.ac.uk/research/groups/plas/wiki/OEP/142 OEP 42]).
--
-- However, the transformation also requires a reader from this XCHAN to read
-- [@em twice], discarding the first item received ([@ref DUMMY.STUFF]).
-- See [@ref xchan.zero.sync.read] and [@ref PATTERN.C].
--

Side 23 av 27

xchan_occ 05.10.2023, 20:33

-- @param ready This is signalled (value irrelevant) when, and only when,
-- a reader is committed to read. This signal [@em must] be taken before
-- data may be sent - the sender is guaranteed that the reader will accept.
-- @param in Data input
-- @param out This must always be read [@em twice], discarding the first item
-- received ([@ref DUMMY.STUFF]).
-- The first read may be part of an [@code ALT]; however, the second read
-- must be committed.
--
PROC xchan.zero.a2 (CHAN BOOL ready!, CHAN STUFF in?, out!)
 WHILE TRUE
 STUFF x:
 SEQ
 out ! DUMMY.STUFF -- look for a reader
 ready ! TRUE -- let the writer know a reader is committed
 in ? x -- the writer delivers (may not be immediate)
 out ! x -- reader is committed to take this
:

--* This is a zero-buffered XCHAN (better behaviour).
--
-- See [@ref xchan.zero.b] for documentation. This process works around the
-- current non-implementation of [@em extended output] in occam-pi by
-- applying the standard transformation (given in
-- [@link https://www.cs.kent.ac.uk/research/groups/plas/wiki/OEP/142 OEP 42]).
--
-- However, the transformation also requires a reader from this XCHAN to read
-- [@em twice], discarding the first item received ([@ref DUMMY.STUFF]).
-- See [@ref xchan.zero.sync.read] and [@ref PATTERN.C].
--
-- @param ready This is signalled with TRUE when, and only when, a reader
-- is committed to read. Prior to that, a FALSE is signalled that should
-- only be accepted when a writer has something to write. The writer must
-- still wait for the TRUE signal before writing - when this happens, the

Side 24 av 27

xchan_occ 05.10.2023, 20:33

-- writer is guaranteed that the reader will read.
-- @param in Data input
-- @param out This must always be read [@em twice], discarding the first item
-- received. The first read may be part of an [@code ALT]; however, the
-- second read must be committed.
--
PROC xchan.zero.b2 (CHAN BOOL ready!, CHAN STUFF in?, out!)
 WHILE TRUE
 STUFF x:
 SEQ
 ready ! FALSE -- taken by a writer who wants to write
 out ! DUMMY.STUFF -- look for a reader
 ready ! TRUE -- let the writer know a reader is committed
 in ? x -- the writer delivers (may not be immediate)
 out ! x -- reader is committed to take this
:

--* This is a trivial process to perform a [@em blocking] read from the
-- current work arounds for zero buffered XCHANs ([@ref xchan.zero.a2] or
-- [@ref xchan.zero.b2]). It reads from the XCHAN [@em twice], discarding
-- the first value and returning the second. It's not really needed and
-- only included for completeness.
--
-- @param data This is what is read from the XCHAN.
-- @param from.xchan The channel from the XCHAN.
--
PROC xchan.zero.sync.read (STUFF data, CHAN STUFF from.xchan?)
 SEQ
 from.xchan ? data -- indicates a writer has something
 from.xchan ? data -- the actual data from the writer
:

--* The reader may use the first read (from the current work arounds for

Side 25 av 27

xchan_occ 05.10.2023, 20:33

-- zero buffered XCHANs: [@ref xchan.zero.a2] or [@ref xchan.zero.b2])
-- as an [@code ALT] guard and commit to the second read as the first
-- part of the response to the guard:
--
-- [@code
-- :
-- -- Pattern 'C'
-- ALT -- or PRI ALT
-- ... other guarded processes
-- STUFF data:
-- from.xchan ? data -- dummy (ignore data)
-- SEQ
-- from.xchan ? data -- response must commit to read
-- ... process the data
-- ... other guarded processes
--]
--
-- However, the reader must beware that the writer will make only best
-- efforts to supply the data for the second read and that this is not
-- guaranteed to be immediate.
--
VAL INT PATTERN.C IS 0:

--* This is a XCHAN process with application-defined capacity.
--
-- If the capacity is set to zero, the implementation uses the [@em simple]
-- behaviour of the logic documented in [@ref xchan.zero.a].
--
-- If the capacity is zero, reading from this XCHAN must follow the
-- [@em read-discard-read-keep] pattern ([@ref xchan.zero.sync.read] or
-- [@ref PATTERN.C]). If the capacity is non-zero, an [@em occam primitive]
-- read ([@code ?]) must be used.
--
-- For writing, [@ref xchan.async.write], [@ref xchan.blocking.write] or

Side 26 av 27

xchan_occ 05.10.2023, 20:33

-- [@ref PATTERN.A] should be used, regardless of buffering capacity.
--
-- @param max The maximum capacity of this XCHAN ([@code max >= 0]).
-- @param ready This is signalled (with [@code TRUE]) when, and only when,
-- data on the [@ref in] channel can be taken. This signal [@em must]
-- be taken before data may be sent.
-- @param in Data input
-- @param out Data output
--
PROC xchan.a (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
 IF
 max < 0
 STOP -- illegal parameter value
 max = 0
 xchan.zero.a2 (ready!, in?, out!)
 TRUE -- DEDUCE: max >= 1
 xchan.buffered.a (max, ready!, in?, out!)
:

--* This is a XCHAN process with application-defined capacity.
--
-- If the capacity is set to zero, the implementation uses the [@em better]
-- behaviour of the logic documented in [@ref xchan.zero.b].
--
-- If the capacity is zero, reading from this XCHAN must follow the
-- [@em read-discard-read-keep] pattern ([@ref xchan.zero.sync.read] or
-- [@ref PATTERN.C]). If the capacity is non-zero, an [@em occam primitive]
-- read ([@code ?]) must be used.
--
-- For writing, [@ref xchan.async.write.b], [@ref xchan.blocking.write.b] or
-- [@ref PATTERN.B] should be used, regardless of buffering capacity.
-- However, if the capacity is non-zero, [@ref xchan.async.write],
-- [@ref xchan.blocking.write] or [@ref PATTERN.A] are marginally more
-- efficient.

Side 27 av 27

xchan_occ 05.10.2023, 20:33

--
-- @param max The maximum capacity of this XCHAN ([@code max >= 0]).
-- @param ready This is signalled (with [@code TRUE]) when, and only when,
-- data on the [@ref in] channel can be taken. This signal [@em must]
-- be taken before data may be sent.
-- @param in Data input
-- @param out Data output
--
PROC xchan.b (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
 IF
 max < 0
 STOP -- illegal parameter value
 max = 0
 xchan.zero.b2 (ready!, in?, out!)
 TRUE -- DEDUCE: max >= 1
 xchan.buffered.a (max, ready!, in?, out!)
:

