xchan_occ

——x* an occam model of Oyvind's 'XCHAN' (CPA 2012).

We model an XCHAN (buffered or unbuffered) with an occam process:

[@text
ready | |
————<—| | out
| xchan (n) | ————>———
| |
in | |

Application messages flow from 'in' to 'out'.

The device signals [@code TRUE] down the 'ready' channel when, and only
when, it will accept input: this signal must be taken by a writing
process before sending anything.

Events on 'ready' and 'in' strictly alternate, starting with 'ready’.
The buffering capacity is 'n' (>= 0).

A reading process simply reads from the output channel of the device.
[@em Warning:] a current implementation restriction means reading from
a [@em zero-buffered] XCHAN must be done twice, discarding the first item.

A writing process has three choices: an [@em asynchronous] write (that
immediately returns with an indication of whether the write succeeded),

a [@em synchronous] write (that does not return until the write succeeds),
or [@code ALT] on the 'ready' channel and other events (until the 'ready'
is signalled and, then, write the message).

This module provides two versions of XCHAN: [@ref xchan.al] and
[@ref xchan.b].

05.10.2023, 20:33

Side 1 av 27

xchan_occ

They differ only in behaviour if their buffering capacity is set
to zero: [@ref xchan.b] is better (but slightly more expensive).

The structure of this module is described in [@ref MODULE.STRUCTURE].

First, the data type carried by the XCHAN ([@ref STUFF]) is declared,
together with a constant of that type ([@ref DUMMY.STUFF]) (which can have
any value).

Because occam-pi does not currently support [@em generic] types, these must
be edited to the type required by the application using the XCHAN.

Next come the [@em basic] mechanisms for writing to XCHANs:

[@ref xchan.async.write], [@ref xchan.blocking.write] and [@ref PATTERN.A].
Beware that these do not work for the second [@em (better)] implementation
of an [@em unbuffered] XCHAN - see below.

The simplest XCHAN implementation is for a buffered XCHAN with capacity 1
([@ref xchan.onel) and this comes next.

Then follow a series of [@em blocking buffer] processes

([@ref buffer.onel, [@ref buffer.al, [@ref buffer.b], [@ref buffer.c]
and [@ref buffer.dl).

These are [@em private] processes, used in the implementation below.

A buffered XCHAN with capacity greater than 1 is just a [@em one-place]
XCHAN ([@ref xchan.one]) pipelined into a blocking buffer ([@ref buffer.dl]),
that provides the rest of the capacity.

This is wrapped into ([@ref xchan.buffered.al), which is a buffered XCHAN
with capacity greater than or equal to 1.

A modest optimisation on the above follows: [@ref xchan.buffered.b].
This is preceded by two [@em private] support processes:
[@ref buffer.one.bool] and [@ref x.ring.buffer].

05.10.2023, 20:33

Side 2 av 27

xchan_occ

Now follow two implementations for an unbuffered XCHAN:

[@em simple unbuffered] ([@ref xchan.zero.a]) and

[@em better unbuffered] ([@ref xchan.zero.b]).

The latter requires small changes in the mechanisms for writing to it:
[@ref xchan.async.write.b], [@ref xchan.blocking.write.b]

and [@ref PATTERN.B].

Unfortunately, both the above unbuffered XCHAN implementations require
[@em extended output]: a feature not yet supported by occam-pi.

There is a simple [@ref WORK.AROUND], given next by [@ref xchan.zero.a2]
and [@ref xchan.zero.b2] (for the simple and better behaviour,
respectively).

However, these require a change to the way the unbuffered XCHAN is read
([@ref xchan.zero.sync.read] or [@ref PATTERN.C]).

[@em Note:] the goal is to have the same mechanisms for reading and writing
XCHANs, regardless of whether they are buffered or unbuffered.

If occam-pi supported [@em extended output], this could be achieved:
reading would be an [@em occam primitive] read ([@code ?]),

from the output channel of the XCHAN, and

writing would use either [@ref xchan.async.write.b],

[@ref xchan.blocking.write.b] or [@ref PATTERN.B].

As things stand, an [@em occam primitive] read ([@code ?]) can only be
used for [@em buffered] XCHANs but the [@em read-discard-read-keep]
pattern ([@ref xchan.zero.sync.read] or [@ref PATTERN.C]) is needed for
[@em unbuffered] XCHANSs.

For writing, [@ref xchan.async.write.b], [@ref xchan.blocking.write.b] or
[@ref PATTERN.B] can be used for [@em all] XCHANs.

However, [@ref xchan.async.write], [@ref xchan.blocking.write] or

[@ref PATTERN.A] are marginally more efficient for [@em buffered] XCHANs
and for the first version [@em unbuffered] XCHANs ([@ref xchan.zero.a2],
[@em simple behaviour]), but cannot be used the second version

([@ref xchan.zero.b2], [@em better behaviourl]).

05.10.2023, 20:33

Side 3 av 27

xchan_occ

—-— Finally, [@ref xchan.al and [@ref xchan.b] are processes implementing
—— XCHANs of any capacity (i.e. [@em buffered] or [@em unbuffered]),

—— offering different implementation choices taking into account

—— the points in the last two paragraphs.

—— Please see their documentation for how they [@em must] be used.

VAL INT MODULE.STRUCTURE IS @:

——% occam-pi currently has no generic types, so we must define code to operate
—— on some specific type. To build an XCHAN for another type, change this
-— declaration to what you want. See also [@ref DUMMY.STUFF].

DATA TYPE STUFF IS REALG64:
——% This is currently needed to support reading from an unbuffered XCHAN
—— (see [@ref WORK.AROUND], [@ref xchan.zero.a2] and [@ref xchan.zero.b2]).

—— [@em Any] value of the [@ref STUFF] type may be chosen for this constant.
—— [@em Implementor's note:] choose a value with minimal memory footprint.

VAL STUFF DUMMY.STUFF IS 0.0:

——% This is an [@em asynchronous] write for an XCHAN. It never blocks and
-— returns with an indication of whether it was able to perform the write.

—— Commonly, this is the first thing tried by a writing process: if it
-— fails, then the [@code ALT]ing pattern on the [@em ready] channel
—-— may be engaged ([@ref PATTERN.A]) rather than continued attempts

—— to write using this process.

—— (@param data This is the message to be written.

05.10.2023, 20:33

Side 4 av 27

xchan_occ

—— (@param success This indicates whether the write happened.

—-— (@param ready.xchan This is the [@em ready] channel from the XCHAN device.

—-— @param to.xchan This is the [@em input] channel to the XCHAN device.

PROC xchan.async.write (VAL STUFF data, BOOL success,
CHAN BOOL ready.xchan?, CHAN STUFF to.xchan!)

PRI ALT
BOOL any:
ready.xchan ? any
SEQ
to.xchan ! data
success := TRUE
SKIP

success := FALSE

——x This is a [@em synchronous] write for an XCHAN. It will block until
— the XCHAN is able to take the message.

—— This procedure would not normally be used (since a primitive channel
—-— or conventional blocking FIFO process would be more efficient).
— It is included for completeness.

—— (@param data This is the message to be written.

—-— (@param ready.xchan This is the [@em ready] channel from the XCHAN device.

—— @param to.xchan This is the [@em input] channel to the XCHAN device.

PROC xchan.blocking.write (VAL STUFF data, CHAN BOOL ready.xchan?,
CHAN STUFF to.xchan!)
BOOL any:
SEQ
ready.xchan ? any
to.xchan ! data

05.10.2023, 20:33

Side 5 av 27

xchan_occ

——% This is the third choice for writing to an XCHAN: wait for the device
—-— to become [@em ready], whilst servicing other events. For example:

—— [@code

— —— Pattern 'A'

- INITIAL BOOL wanting.to.write IS TRUE:

- WHILE wanting.to.write

— ALT —— or PRI ALT

- BOOL any:

— ready.xchan ? any

- SEQ

- to.xchan ! data

- wanting.to.write := FALSE

- ... process other guards (which may change 'data')

—]

—— The writer may adopt this pattern at any time: there is no obligation
-— to try an [@ref xchan.async.write] first.

-— Note that there is no obligation on the writer to send the data it
—— originally had; it is free to discard that and send, for example, data
—— acquired since it started waiting.

VAL INT PATTERN.A IS 0:

—-—% This is a [@em one-place buffered] XCHAN process.

—-— Its behaviour is exactly that of an [@em auto-prompter], a common occam
—— idiom.

—-— @param ready This is signalled (with [@code TRUE]) when, and only when,

05.10.2023, 20:33

Side 6 av 27

xchan_occ

— data on the [@ref in] channel can be taken. This signal [@em must]
- be taken before data may be sent.

—— (@param in Data input

—— (@param out Data output

PROC xchan.one (CHAN BOOL ready!, CHAN STUFF in?, out!)
WHILE TRUE
STUFF x:
SEQ
ready ! TRUE
in ? X
out ! x

——% To build a [@em buffered] XCHAN process with application-defined capacity,
-— we just need a [@em one-place buffered] XCHAN process ([@ref xchan.onel)
—— pipelined with a standard blocking buffer (with capacity one less than

—— required for the [@em buffered] XCHAN). First, we build the latter.

VAL INT BUFFERED.XCHAN.CAPACITY IS 0:

——% This is a standard [@em one-place blocking buffer], commonly known as
—-— an [@em id-process]. It just copies input to output.

—-— @param in Data input
—— @param out Data output

PROC buffer.one (CHAN STUFF in?, out!)
WHILE TRUE
STUFF x:
SEQ
in ? x
out ! x

05.10.2023, 20:33

Side 7 av 27

xchan_occ

#IF FALSE

——x This is a standard [@em blocking buffer] process with application-defined
-— capacity, implemented as a pipeline of [@em one-place blocking buffers]
-— ([@ref buffer.onel). For this implementation, the capacity must be more
—— than one.

—— [@em Warning:] this process does not compile (because occam-pi runtime

—— sized channel arrays currently have to be built from arrays of mobile

—— channel-ends - see [@ref buffer.b]). It is presented here for

—— easier understanding of its code (and because occam-pi will [@em eventuallyl]
-— compile it).

—— @param max The maximum capacity of this buffer ([@code max >= 11).
—— (@param in Data input

—— (@param out Data output

PROC buffer.a (VAL INT max, CHAN STUFF in?, out!)

IF
max < 1
STOP —— illegal parameter value
max = 1
buffer.one (in?, out!)
TRUE —— DEDUCE: max >= 2
[max — 1]CHAN STUFF c: —— runtime sized channel array (will not compile)
PAR
buffer.one (in?, c[0@]!)
PAR i = @ FOR max - 2
buffer.one (c[i]?, c[i+1]!)
buffer.one (clmax - 21?, out!)
#ENDIF

05.10.2023, 20:33

Side 8 av 27

xchan_occ

—-—% To implement [@ref buffer.two.plus.al in a way that compiles, we must
—— build the channel array from mobile channel-ends. This declares the
—— needed mobile channel type (a trivial structure with one field).

—— This is a [@em private] declaration, used only for the implementation
-— of [@ref buffer.bl].

CHAN TYPE STUFF.CHAN
MOBILE RECORD
CHAN STUFF c?:

—-—% This is a standard [@em blocking buffer] process with application-defined
—— capacity, implemented as a pipeline of [@em one-place blocking buffers]
—— ([@ref buffer.onel). This implementation will compile and run correctly.

—— @param max The maximum capacity of this buffer ([@code max >= 1]).
-— (@param in Data input
—— (@param out Data output

PROC buffer.b (VAL INT max, CHAN STUFF in?, out!)

IF
max < 1
STOP — illegal parameter value
max = 1
buffer.one (in?, out!)
TRUE —— DEDUCE: max >= 2

INITIAL MOBILE []STUFF.CHAN! c@ IS MOBILE [max]STUFF.CHAN!:
INITIAL MOBILE []STUFF.CHAN? c1 IS MOBILE [max]STUFF.CHAN?:

SEQ
SEQ i = © FOR max
c0[i], c1[i] := MOBILE STUFF.CHAN —- connect the ends
PAR

05.10.2023, 20:33

Side 9 av 27

xchan_occ

——%

STUFF.CHAN! x IS co[0]:

buffer.one (in?, xI[c]!)

PAR 1 = 0 FOR max - 3
STUFF.CHAN? x IS c1l[i]:
STUFF.CHAN! y IS cO[i + 1]:
buffer.one (x[cl?, ylcl!)

STUFF.CHAN? x IS cl[max - 3]:

buffer.one (x[cl?, out!)

We can build a buffer process in a more serial way (that will be much
more efficient if implemented by software). 1In concept, it is slightly
more complicated (but only [@em slightly]) than a pipeline of one-place
blocking buffers. It is taken from the [@em "Concurrency Design and
Practice"] course at the University of Kent.

INT BUFFER.SERIAL IS 0:

This is a standard [@em blocking buffer] process with application-defined
capacity, implemented as classic [@em ring buffer]. However, this needs
a [@em request] channel that the reader process must signal before reading.

@param max The maximum capacity of this buffer ([@code max >= 1]).
@param in Data input
@param out Data output

@param request The reader must signal (value irrelevant) on this before reading.

PROC buffer.c (VAL INT max, CHAN STUFF in?, out!, CHAN BOOL request?)

IF

max < 1
STOP —— illegal parameter value
max = 1
WHILE TRUE —— this case does not need separate coding,

05.10.2023, 20:33

Side 10 av 27

xchan_occ

STUFF x: —— since its logic is implemented by the general

SEQ —-— code in the next condition; it's added here
in 7 x —— to show the logic for this trivial case (and
BOOL any: —— for efficiency).

request ? any
out ! x
TRUE
INITIAL MOBILE []STUFF ho
INITIAL INT size IS 0:
INITIAL INT lo IS 0:
INITIAL INT hi IS 0:

DEDUCE: max >= 1

1d IS MOBILE [max]STUFF:

—— current size of buffer
— index of oldest item in buffer (if size > 0)
—— index of next free slot (if size < max)

WHILE TRUE
ALT
(size < max) & in ? hold[hi]
SEQ
hi := (hi + 1)\max
size := size + 1
BOOL any:

(size > @) & request ? any

SEQ
out ! hold[lo]

1o := (lo + 1)\max

size := size - 1

——% This is a standard [@em blocking buffer] process with application-defined
—— capacity, implemented as classic [@em ring buffer]. It eliminates the

—-— need for a [@em request] channel by pipelining [@ref buffer.c] with an

—-— [@em auto-prompter] (which is, of course, [@ref xchan.one]).

—— @param max The maximum capacity of this buffer ([@code max >= 11).

—— (@param in Data input
-— (@param out Data output

05.10.2023, 20:33

Side 11 av 27

xchan_occ

PROC buffer.d (VAL INT max, CHAN STUFF in?, out!)

IF
max < 1
STOP — illegal parameter value
max =1
buffer.one (in?, out!)
TRUE —— DEDUCE: max >= 2

CHAN BOOL request:

CHAN STUFF c:

PAR
buffer.c (max - 1, in?, c!, request?)
xchan.one (request!, c?, out!)

——% This is a [@em one-buffered] XCHAN process with application-defined capacity.
—-— It is built from a [@em one-place buffered] XCHAN process ([@ref xchan.onel)
—— pipelined with a standard blocking buffer ([@ref buffer.d]).

—— (@param max The maximum capacity of this XCHAN ([@code max >= 1]).

—-— @param ready This is signalled (with [@code TRUE]) when, and only when,
- data on the [@ref in] channel can be taken. This signal [@em must]
- be taken before data may be sent.

—— (@param in Data input

—— (@param out Data output

PROC xchan.buffered.a (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
IF

max < 1

STOP — 1illegal parameter value
max = 1

xchan.one (ready!, in?, out!)
TRUE —— DEDUCE: max >= 2

CHAN STUFF c:

05.10.2023, 20:33

Side 12 av 27

xchan_occ

PAR
xchan.one (ready!, in?, c!)
buffer.d (max - 1, c?, out!)

——x [@em Note:] messages passing through [@ref xchan.buffered.al]

—— pass through three hops (for capacities greater than 2).

—— The version originally devised ([@ref xchan.buffered.b]) makes messages

—-— pass through only two hops. However, it makes the [@em ready] signal also
—— pass through two hops - so may not be any faster! First, we need an

-— [@em id-process] for those [@em ready] signals ([@ref buffer.one.booll)

—— and, then, a [@em ring buffer] folded with XCHAN code ([@ref x.ring.buffer]).

VAL INT OPTIMISED.BUFFERED.XCHAN IS 0:

——x This is a standard [@em one-place blocking buffer], commonly known as
—— an [@em id-process]. It just copies input to output.

—— @param in Data input

—— @param out Data output

PROC buffer.one.bool (CHAN BOOL in?, out!)
WHILE TRUE
BOOL x:
SEQ
in ? x
out ! x

——% Standard ring buffer modified to provide an XCHAN ready signal.

—-— This is a service process for the [@ref xchan.buffered.b] (below).

05.10.2023, 20:33

Side 13 av 27

xchan_occ

— @
— @
— @
@
@

PROC

IN
IN
SE

It should not be used directly by systems.

There must be an [@ref xchan.one] [@em auto-prompter] driving

the [@code prompt] and [@code out] channels.

There must be a [@ref buffer.one.bool] [@em id-process] forwarding
[@code ready] signals.

A 'ready' signal is offered if and only if space is available
to buffer another item of data. Events 'ready' and 'in' must
strictly alternate, starting with 'ready'.

To write to 'in', a 'ready' signal (forwarded by 'id.bool')
must first be accepted by the writer. Disregarding this
protocol leads to this process [@code STOPlping and probable deadlock.

param max Size of the buffer (>= 1)
param in Data input
param out Data output

param prompt Reader must prompt for output
param ready Writer must take this signal before writing
x.ring.buffer (VAL INT max, CHAN STUFF in?, out!,
CHAN BOOL prompt?, ready!) -— , error!)
Note: if (#ready! = #in?) and the writer to 'in' follows the required

protocol, all 'ready' signals generated by this process have
been taken by the writer process and the accompanying 'id.bool'
process is waiting for the next 'ready' from here (i.e. the
next 'ready' will not block). This holds in all states of this
process (not just at the start of its loop).

ITIAL MOBILE []STUFF buffer IS MOBILE [max]STUFF:
T lo, hi, size:

Q

lo, hi, size := 0, 0, O

05.10.2023, 20:33

Side 14 av 27

xchan_occ 05.10.2023, 20:33

ready ! TRUE —— DEDUCE: will not block ('id.bool' is waiting)
WHILE TRUE
—— INVARIANT: (size < max) <==> (#ready! = #in? + 1)
—— INVARIANT: (size = max) <==> (#ready! = #in?)
ALT
STUFF any:
(size = max) & in ? any —— protocol violation (by writer)
SEQ
— error ! FALSE —— this error is intended to be fatal
STOP —— 1if skipped, a more complex loop invariant is needed

(size < max) & in ? buffer[hil
—— DEDUCE: #ready! = #in?
—— assume: writer has cleared previous 'ready' from 'id.bool'
- (see above note). Otherwise there has been a protocol
— violation (which cannot be detected here).
SEQ

hi := (hi + 1)\max
size := size + 1
IF
size < max
ready ! TRUE —— DEDUCE: will not block ('id.bool' is waiting)
—— DEDUCE: (size < max) AND (#ready! = #in? + 1)
TRUE
SKIP —— DEDUCE: (size = max) AND (#ready! = #in?)
BOOL any:
(size > @) & prompt ? any
SEQ

out ! buffer[lo]
1o := (lo + 1)\max
IF
size < max
SKIP —— DEDUCE: (size
TRUE

#in? + 1)

A

max) AND (#ready!

—— DEDUCE: (size = max) AND (#ready! = #in?)
ready ! TRUE —— DEDUCE: will not block ('id.bool' is waiting)

Side 15 av 27

xchan_occ

—— DEDUCE: (size = max) AND (#ready! = #in? + 1)
size := size -1
—— DEDUCE: (size < max) AND (#ready! = #in? + 1)

—-—x This is a [@em one-buffered] XCHAN process with application-defined capacity.

—— [@em Historical note:] this was the original version (just before CPA 2012).

—— (@param max The maximum capacity of this XCHAN ([@code max >= 1]).

—— @param ready This is signalled (with [@code TRUE]) when, and only when,
— data on the [@ref in] channel can be taken. This signal [@em must]
— be taken before data may be sent.

—— (@param in Data input

—— (@param out Data output

PROC xchan.buffered.b (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)

IF
max < 1
STOP — illegal parameter value
max = 1
xchan.one (ready!, in?, out!)
TRUE —— DEDUCE: max >= 2

CHAN BOOL a, r:

CHAN STUFF b:

PAR
x.ring.buffer (max - 1, in?, b!, a?, r!) -, error!)
xchan.one (a!, b?, out!)
buffer.one.bool (r?, ready!)

——x% Next come zero-buffered XCHANs.

05.10.2023, 20:33

Side 16 av 27

xchan_occ

VAL INT ZERO.BUFFERED IS 0:

#IF FALSE

——x This is a zero-buffered XCHAN (simple behaviour).

-— It fishes for a reader by offering an [@em extended output] ([@code out !!]).
—-— When a reader is caught, it fishes for a writer by signalling on [@em ready].

—— When it has caught both, the data is transferred. No buffering is
—— introduced by this process in the connection between its writer and
-— reader.

— Its weakness is that a reader is sought before there is any indication
-— that a write is pending. This is addressed in [@ref xchan.zero.b].

—— [@em Warning:] this process will not compile since [@em extended output]
—— 1is not yet supported by occam-pi. See [@ref xchan.zero.a2] for a
—— work-around.

—— @param ready This is signalled (with [@code TRUE]) when, and only when,

—_— a reader is committed to read. This signal [@em must] be taken before
— data may be sent - the sender is guaranteed that the reader will accept.
—— (@param in Data input

—— (@param out Data output

PROC xchan.zero.a (CHAN BOOL ready!, CHAN STUFF in?, out!)

WHILE TRUE
STUFF x:
out !! —— look for a reader (will not yet compile)
SEQ
ready ! TRUE —- let the writer know a reader is committed
in ? x —— the writer delivers (may not be immediate)
X —— reader is committed to take this

05.10.2023, 20:33

Side 17 av 27

xchan_occ

——% This is a zero-buffered XCHAN (better behaviour).

It fixes the weakness noted in the documentation for [@ref xchan.zero.a].
However, it requires slightly different logic for an application process
that writes to it ([@ref xchan.async.write.b]l, [@ref xchan.blocking.write.b]
and [@ref PATTERN.B]). [@em Note:] these revised processes and pattern

may also be used with all other versions of buffered and unbuffered XCHANs
(with only a slight overhead cost).

For a [@em writer] to this process, the values from its [@em ready] channel are
significant. This is because this process first fishes for writer by

sending a [@code FALSE] signal on [@em ready]. As normal, when and only when the
writer has something to send, it waits for a signal on [@em ready].

However, if that signal was [@code FALSE], the writer must keep waiting until it
gets a [@code TRUE]. A1l this waiting can, of course, be done whilst processing
other events (using [@code ALT]). Meanwhile a writer, by accepting the [@code FALSE],
lets this process know that it has something to send and this process then

fishes for a [@em reader] (using [@em extended output], [@code out !!]).

Once found, the reader is committed and this process now sends [@code TRUE]

on [@em ready] to encourage the writer to write something (which need not,

of course, be what it originally had to send). The writer writes, this process
forwards, the reader reads and no buffering semantics have been introduced.

The reader from an [@ref xchan.zero.b] just does a normal read, as before.
Disregarding the new writer protocol leads to deadlock. Checking

that a writer has followed this protocol can be done by a simple

visual check of the code (to ensure a write follows, and only follows,

a [@code TRUE] on 'ready') or, automatically, by a specialised tool or simple
model check.

[@em Warning:] this process will not compile since [@em extended output]
is not yet supported by occam-pi. See [@ref xchan.zero.b2] for a
work—-around.

05.10.2023, 20:33

Side 18 av 27

xchan_occ 05.10.2023, 20:33

—-— @param ready This is signalled with [@code TRUE] when, and only when, a reader
— is committed to read. Prior to that, a [@code FALSE] is signalled that should
— only be accepted when a writer has something to write. The writer must

- still wait for the [@code TRUE] signal before writing - when this happens, the
- writer is guaranteed that the reader will read.

—— (@param in Data input

—— (@param out Data output

PROC xchan.zero.b (CHAN BOOL ready!, CHAN STUFF in?, out!)

WHILE TRUE
SEQ
ready ! FALSE —— taken by a writer who wants to write
STUFF x:
out !! —— look for a reader (will not yet compile)
SEQ
ready ! TRUE —— let the writer know a reader is committed
in ? x —— the writer delivers (may not be immediate)
X —— reader is committed to take this
#ENDIF

——% This is an [@em asynchronous] write for a [@ref xchan.zero.b]

—— (a zero-buffered XCHAN).

—— It never blocks and returns with an indication of whether it was able
—— to perform the write.

—— A writer could simply keep using this process when it has data to send.

—— There will be at least one FALSE result (maybe many) before a TRUE.

—— It is up to the writer whether to keep sending the same data until success
—— or fresh data. When a write has succeeded, the writer can be assured the
—— reader has taken it (or is about to take it).

Side 19 av 27

xchan_occ

Commonly, this is the first thing tried by a writing process: if it fails,
then the [@code ALTling [@ref PATTERN.B] on the [@em ready] channel may
be engaged (rather than continued attempts to write using this process).

@param data This is the message to be written.

@param success This indicates whether the write happened.

@param ready.xchan This is the [@em ready] channel from the XCHAN device.
@param to.xchan This is the [@em input] channel to the XCHAN device.

PROC xchan.async.write.b (VAL STUFF data, BOOL success,

CHAN BOOL ready.xchan?, CHAN STUFF to.xchan!)

PRI ALT
ready.xchan ? success
IF
success
to.xchan ! data
TRUE
SKIP
SKIP

success := FALSE

This is a [@em synchronous] write for an XCHAN. It will block until
the XCHAN is able to take the message.

This procedure would not normally be used (since a primitive channel
or conventional blocking FIFO process would be more efficient).
It is included here for completeness.

[@em Note:] the loop in the code is not needed (see the comments).
However, if this process is used for writing to buffered XCHANS or the
previous version of an unbuffered XCHAN ([@ref xchan.zero.a]), the
comments do not apply: there will only be one TRUE signal and this coding
still works.

05.10.2023, 20:33

Side 20 av 27

xchan_occ

—— (@param
—— (@param
—— (@param

PROC xchan

BOOL ok:
SEQ

data This is the message to be written.

ready.xchan This is the [@em ready] channel from the XCHAN device.
to.xchan This is the [@em input] channel to the XCHAN device.

.blocking.write.b (VAL STUFF data, CHAN BOOL ready.xchan?,
CHAN STUFF to.xchan!)

ready.xchan ? ok
WHILE NOT ok

ready.xchan ? ok
an ! data

to.xch

-— this will be FALSE

—— this will be TRUE

——x More useful may be the following strategy.

—-— When a writer has something to send, listen on the [@em ready] channel
—— from the XCHAN: this lets the zero-buffered channel know that a writer is waiting.
—-— Ignore [@code FALSE]

[@em readys].

—— When [@code TRUE] is received from [@em ready], send the data.
—— The writer can be assured the reader has committed to take it:

-— [@code

- —-— Pattern
- INITIAL BOOL wanting.to.write IS TRUE:
- WHILE wanting.to.write
— ALT
BOOL ok:

ready.xchan ? ok

IF

ok

IBI

SEQ
to.xchan

I data

—— or PRI ALT

—— means a reader is waiting

05.10.2023, 20:33

Side 21 av 27

xchan_occ

wanting.to.write := FALSE
TRUE
SKIP
process other guards (which may change 'data')

]

The writer may adopt this pattern at any time: there is no obligation
to try an [@ref xchan.async.write.b] first.

Note that there is no obligation on the writer to send the data it
originally had; it is free to discard that and send, for example, data
acquired since it started waiting.

INT PATTERN.B IS 0:

Here are the work-arounds for processes [@ref xchan.zero.a] and

[@ref xchan.zero.b] (which do not compile because occam-pi does not yet
support [@em extended output]). They require readers to read [@em twice],
discarding the first item ([@ref DUMMY.STUFF]).

INT WORK.AROUND IS @:

This is a zero-buffered XCHAN (simple behaviour).

See [@ref xchan.zero.a] for documentation. This process works around the
current non-implementation of [@em extended output] in occam-pi by
applying the standard transformation (given in

[@link https://www.cs.kent.ac.uk/research/groups/plas/wiki/0EP/142 OEP 42]).

However, the transformation also requires a reader from this XCHAN to read
[@em twice], discarding the first item received ([@ref DUMMY.STUFF]).
See [@ref xchan.zero.sync.read] and [@ref PATTERN.C].

05.10.2023, 20:33

Side 22 av 27

xchan_occ 05.10.2023, 20:33

—— @param ready This is signalled (value irrelevant) when, and only when,

—_— a reader is committed to read. This signal [@em must] be taken before
- data may be sent - the sender is guaranteed that the reader will accept.
—— (@param in Data input

—— @param out This must always be read [@em twice], discarding the first item
— received ([@ref DUMMY.STUFF]).

—_— The first read may be part of an [@code ALT]; however, the second read
— must be committed.

PROC xchan.zero.a2 (CHAN BOOL ready!, CHAN STUFF in?, out!)

WHILE TRUE
STUFF x:
SEQ
out ! DUMMY.STUFF — look for a reader
ready ! TRUE —— let the writer know a reader is committed
in ? x —— the writer delivers (may not be immediate)
out ! x —— reader is committed to take this

——% This is a zero-buffered XCHAN (better behaviour).

—— See [@ref xchan.zero.b] for documentation. This process works around the
—-— current non-implementation of [@em extended output] in occam-pi by

—-— applying the standard transformation (given in

—— [@link https://www.cs.kent.ac.uk/research/groups/plas/wiki/0EP/142 QEP 42]).

-— However, the transformation also requires a reader from this XCHAN to read
-— [@em twicel, discarding the first item received ([@ref DUMMY.STUFF]).
-— See [@ref xchan.zero.sync.read] and [@ref PATTERN.C].

—— (@param ready This is signalled with TRUE when, and only when, a reader

— is committed to read. Prior to that, a FALSE is signalled that should
- only be accepted when a writer has something to write. The writer must
- still wait for the TRUE signal before writing - when this happens, the

Side 23 av 27

xchan_occ 05.10.2023, 20:33

- writer is guaranteed that the reader will read.

—— (@param in Data input

—— @param out This must always be read [@em twicel, discarding the first item
—_— received. The first read may be part of an [@code ALT]; however, the

- second read must be committed.

PROC xchan.zero.b2 (CHAN BOOL ready!, CHAN STUFF in?, out!)

WHILE TRUE

STUFF x:

SEQ
ready ! FALSE —— taken by a writer who wants to write
out ! DUMMY.STUFF —— look for a reader
ready ! TRUE — let the writer know a reader is committed
in ? x —— the writer delivers (may not be immediate)
out ! x —— reader is committed to take this

——% This is a trivial process to perform a [@em blocking] read from the

—— current work arounds for zero buffered XCHANs ([@ref xchan.zero.a2] or
—— [@ref xchan.zero.b2]). It reads from the XCHAN [@em twice], discarding
—— the first value and returning the second. 1It's not really needed and
— only included for completeness.

—— (@param data This is what is read from the XCHAN.
—— (@param from.xchan The channel from the XCHAN.

PROC xchan.zero.sync.read (STUFF data, CHAN STUFF from.xchan?)

SEQ
from.xchan ? data —-- indicates a writer has something
from.xchan ? data —— the actual data from the writer

—-—% The reader may use the first read (from the current work arounds for

Side 24 av 27

xchan_occ

—— zero buffered XCHANs: [@ref xchan.zero.a2] or [@ref xchan.zero.b2])
—-— as an [@code ALT] guard and commit to the second read as the first
—— part of the response to the guard:

—— [@code

- —— Pattern 'C'

— ALT —— or PRI ALT

— ... oOther guarded processes

- STUFF data:

- from.xchan ? data —— dummy (ignore data)

- SEQ

- from.xchan ? data —— response must commit to read

- ... process the data
- ... other guarded processes
— 1

—— However, the reader must beware that the writer will make only best
— efforts to supply the data for the second read and that this is not
—— guaranteed to be immediate.

VAL INT PATTERN.C IS 0:

——% This is a XCHAN process with application-defined capacity.
—-— If the capacity is set to zero, the implementation uses the [@em simplel
—— behaviour of the logic documented in [@ref xchan.zero.a].

—— If the capacity is zero, reading from this XCHAN must follow the

-— [@em read-discard-read-keep] pattern ([@ref xchan.zero.sync.read] or

—— [@ref PATTERN.C]). 1If the capacity is non-zero, an [@em occam primitive]
-— read ([@code ?]) must be used.

-— For writing, [@ref xchan.async.write], [@ref xchan.blocking.write] or

05.10.2023, 20:33

Side 25 av 27

xchan_occ 05.10.2023, 20:33

—— [@ref PATTERN.A] should be used, regardless of buffering capacity.

—— @param max The maximum capacity of this XCHAN ([@code max >= 0]).

—— @param ready This is signalled (with [@code TRUE]) when, and only when,
— data on the [@ref in] channel can be taken. This signal [@em must]
- be taken before data may be sent.

—— (@param in Data input

—— (@param out Data output

PROC xchan.a (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)

IF
max < 0
STOP —— illegal parameter value
max = 0
xchan.zero.a2 (ready!, in?, out!)
TRUE —— DEDUCE: max >= 1

xchan.buffered.a (max, ready!, in?, out!)

——* This is a XCHAN process with application-defined capacity.

—— If the capacity is set to zero, the implementation uses the [@em better]
—-— behaviour of the logic documented in [@ref xchan.zero.b].

—-— If the capacity is zero, reading from this XCHAN must follow the

—— [@em read-discard-read-keep] pattern ([@ref xchan.zero.sync.read] or

—-— [@ref PATTERN.C]). If the capacity is non-zero, an [@em occam primitivel
—— read ([@code ?]) must be used.

-— For writing, [@ref xchan.async.write.b], [@ref xchan.blocking.write.b] or
—-— [@ref PATTERN.B] should be used, regardless of buffering capacity.

-— However, if the capacity is non-zero, [@ref xchan.async.write],

-— [@ref xchan.blocking.write] or [@ref PATTERN.A] are marginally more

-—— efficient.

Side 26 av 27

xchan_occ

—— @param max The maximum capacity of this XCHAN ([@code max >= 0]).

—— @param ready This is signalled (with [@code TRUE]) when, and only when,
— data on the [@ref in] channel can be taken. This signal [@em must]
- be taken before data may be sent.

—— (@param in Data input

—— (@param out Data output

PROC xchan.b (VAL INT max, CHAN BOOL ready!, CHAN STUFF in?, out!)
IF

max < 0

STOP —— illegal parameter value
max = 0

xchan.zero.b2 (ready!, in?, out!)
TRUE —— DEDUCE: max >= 1

xchan.buffered.a (max, ready!, in?, out!)

05.10.2023, 20:33

Side 27 av 27

