An occam Model of
XCHANs

Peter Welch (phwlkent. ac. uk)

CPA 2013 Fringe, Napier University, 26 August, 2013
" iniei /

Appeared at CPA 2013 (Communicating Process Architectures 2013) as a fringe lecture by Peter Welch of
University of Kent. It goes into details of the XCHAN by modeling a possible implementation. Welch is showing
this with a not yet implemented version of the occam programming language:

https://web.archive.org/web/20160410053657/http://www.wotug.org/paperdb/show proc.php?
f=4&num=30

Restored from (where they would exist forever):

https://web.archive.org/web/20220527212930/https://www.cs.kent.ac.uk/research/groups/plas/wiki/
An occam Model of XCHANs?action=AttachFile&do=get&target=xchan-slides.pdf

Original not available anymore (Oct2023):

https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam Model of XCHANs?
action=AttachFile&do=get&target=xchan-slides.pdf

PDF made from export or print from Wayback Machine had each page mirrored (Safari 17.0, macOS 12.7). This
new original made from screen clips by Qyvind Teig, Trondheim, Norway in Oct2023. Appears at:

https://www.teigfam.net/oyvind/blog notes/250/
an_occam model of xchans slides peter welch 2013.pdf

XCHAN described at XCHANs: Notes on a New Channel Type by Gyvind Teig, at CPA 2012 (Communicating
Process Architectures 2012), now see:

XCHANSs: Notes on a New Channel Type
https://www.teigfam.net/oyvind/home/technology/250-xchans-notes-on-a-new-channel-type/

The WoTUG / CPA pages in Oct2013 exist in their original form:

https://wotug.org/cpa2012/ and https://wotug.org/cpa2013/

https://web.archive.org/web/20160410053657/http://www.wotug.org/paperdb/show_proc.php?f=4&num=30
https://web.archive.org/web/20160410053657/http://www.wotug.org/paperdb/show_proc.php?f=4&num=30
https://web.archive.org/web/20220527212930/https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs?action=AttachFile&do=get&target=xchan-slides.pdf
https://web.archive.org/web/20220527212930/https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs?action=AttachFile&do=get&target=xchan-slides.pdf
https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs?action=AttachFile&do=get&target=xchan-slides.pdf
https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs?action=AttachFile&do=get&target=xchan-slides.pdf
https://www.teigfam.net/oyvind/blog_notes/250/an_occam_model_of_xchans_slides_peter_welch_2013.pdf
https://www.teigfam.net/oyvind/blog_notes/250/an_occam_model_of_xchans_slides_peter_welch_2013.pdf
https://www.teigfam.net/oyvind/home/technology/250-xchans-notes-on-a-new-channel-type/
https://wotug.org/cpa2012/
https://wotug.org/cpa2013/

XCHANSs

An XCHAN is a finitely (possibly zero) buffered channel
that is asynchronous in the sense that it never blocks.

If a writer writes to an XCHAN that cannot take the
message (e.g. because its buffer is full or, if zero-
buffered, because no reader is committed to read),
then the write fails. The writer gets the success status
of each write.

An XCHAN also signals on a feedback channel when a
write will be successful ...

e

XCHANSs

XCHANSs

An XCHAN is a finitely (possibly zero) buffered channel
that is asynchronous in the sense that it never blocks.

If a writer writes to an XCHAN that cannot take the
message (e.g. because its buffer is full or, if zero-
buffered, because no reader is committed to read),
then the write fails. The writer gets the success status

of each write.

An XCHAN also signals on a faedback channel when a

write will be successful ...

in.x

xchan >
> out

We model an XCHAN

with an eccam-n
process and channels

out

PROTOCOL XCHAN
CASE
ready

PROC x.write (VAL DATA d, BOOL status,
CHAN XCHAN out.x?,
CHAN DATA out!)
PRI ALT
out.x ? ready
SEQ
out ' d
status := TRUE
SKIP
status := FALSE

Non-blocking
write to XCHAN
(with success
status result)

out

or

PROTOCOL XCHAN
CASE
ready

PROC x.write.sync (VAL DATA d,
CHAN XCHAN out.x?,
CHAN DATA out!)
SEQ
out.x ? ready
out !' d

Synchronous
write to XCHAN
(blocks until
taken)

PROTOCOL XCHAN
CASE

in out ready
or
ALT
out.x ? ready Response
out ! d to XCHAN signal
other guarded processes (will not block)

PROTOCOL XCHAN
CASE
out ready

PROC xchan.l (CHAN DATA in%?, out!,
CHAN XCHAN in.x!)
WHILE TRUE

DATA d:

SEQ
in.x ! ready
in ? d
out !' d

1-buffered XCHAN implementation

. PROTOCOL XCHAN
in.x CASE
in out ready
in.x
E—— xchan (n) out

in

n-buffered XCHAN implementation

PROTOCOL XCHAN
CASE
ready

buffer (n-1) E—
out

(Standard
_ blocking buffer

xchan (n)

n-buffered XCHAN implementation

PROTOCOL XCHAN
CASE
ready

PROC xchan.0 (CHAN DATA in?, out!,
CHAN XCHAN in.x!)

0-buffered XCHAN implementation

PROTOCOL XCHAN
CASE
ready

PROC xchan.0 (CHAN DATA in?, out!,
CHAN XCHAN in.x!)
WHILE TRUE
DATA d:
out !!

_code executes. _

0-buffered XCHAN

“When and :
when a reader
commits, this

inally, the
. _messageis
_ written.

implementation

PROTOCOL XCHAN
CASE
ready

“"When and only >
when a reader

PROC xchan.0 (CHAN DATA in?, out!,
CHAN XCHAN in.x!)

m;:::l;m 1 commits, this 4
out !! -- fish for reader ‘ 7v

- - Finally, the

LR message is
written.

0-buffered XCHAN implementation

PROTOCOL XCHAN
CASE
£ish
ready

PROC xchan.0 (CHAN DATA in?, out!,
CHAN XCHAN in.x!)

WHILE TRUE
SEQ
in.x ! fish -- fish for writer
DATA d:
out !! -- fish for reader

0-buffered XCHAN (better)

~ When and only
when a reader
. commits, this
“_code executes. _~

inally, the
~ message is
' itten.

implementation

out

PROTOCOL XCHAN
CASE
fish
ready

PROC x.write (VAL DATA d, BOOL status,
CHAN XCHAN out.x?,
CHAN DATA out!)
PRI ALT
out.x ? fish
status := FALSE
out.x ? ready
SEQ
out ' d
status := TRUE
SKIP
status := FALSE

Non-blocking
write to XCHAN
(with success
status result)

out

PROTOCOL XCHAN
CASE
fish
ready

PROC x.write (VAL DATA d,
CHAN XCHAN out.x?,
CHAN DATA out!)
INITIAL BOOL writing IS TRUE:
WHILE writing
ALT
out.x ? fish
SKIP
out.x ? ready
SEQ
out ! d
writing := FALSE

Synchronous
write to XCHAN
(blocks until
taken)

out

PROTOCOL XCHAN
CASE
£ish
ready

ALT
out.x ? fish
SKIP
out.x ? ready
out ! d
other guarded processes

Response
to XCHAN signal
(will not block)

XCHANs

An XCHAN is a finitely (possibly zero) buffered channel
that is asynchronous in the sense that it never blocks.

If a writer writes to an XCHAN that cannot take the
message (e.g. because its buffer is full or, if zero-
buffered, because no reader is committed to read),
then the write fails. The writer gets the success status
of each write.

An XCHAN also signals on a faedback channel when a
write will be successful ...

