
SPI (3.0.2)

SPI Library
A software defined, industry-standard, SPI (serial peripheral interface) component that allows you to con-
trol an SPI bus via the xCORE GPIO hardware-response ports. SPI is a four-wire hardware bi-directional
serial interface.

The SPI bus can be used by multiple tasks within the xCORE device and (each addressing the same or
different slaves) and is compatible with other slave devices on the same bus.

Features

• SPI master and SPI slave modes.
• Supports speed of up to 100 Mbit.

• Multiple slave device support
• All clock polarity and phase configurations

supported.

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

Master (synchronous, zero clock blocks) 4 4 (1-bit) 0 ~1.3K 0

Master (synchronous, one clock block) 4 4 (1-bit) 1 ~2.7K 0

Master (asynchronous) 4 4 (1-bit) 2 ~3.3K 1

Slave (32 bit transfer mode) 4 4 (1-bit) 1 ~0.8K 1

Slave (8 bit transfer mode) 4 4 (1-bit) 1 ~0.8K 1

The number of pins is reduced if either of the data lines are not required.

Software version and dependencies

This document pertains to version 3.0.2 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

The library does not have any dependencies (i.e. it does not rely on any other libraries).

Related application notes

The following application notes use this library:

• AN00160 - How to communicate as SPI master
• AN00161 - How to communicate as SPI slave

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006232

SPI (3.0.2)

1 External signal description

The SPI protocol requires a clock, one or more slave selects and either one or two data wires.

SCLK Clock line, driven by the master

MOSI Master Output, Slave Input data line, driven by the master

MISO Master Input, Slave Output data line, driven by the slave

SS Slave select line, driven by the master

Table 1: SPI data wires

During any transfer of data, the master will assert the SS line and then output a series of transitions on
the SCLK wire. During this time, the slave will drive data to be sampled by the master and the master will
drive data to be sampled by the slave. At the end of the transfer, the SS is de-asserted.

If the slave select line is not driven high then the slave should ignore any transitions on the other lines.

1.1 SPI modes

The data sample points for SPI are defined by the clock polarity (CPOL) and clock phase (CPHA) parameters.
SPI clock polarity may be inverted or non-inverted by the CPOL and the CPHA parameter is used to shift
the sampling phase. The following for sections illustrate the MISO and MOSI data lines relative to the
clock. The timings are given by:

t1 The minimum time from the start of the transaction to data being valid on the
data pins.

t2 The inter-transmission gap. This is the minimum amount of time that the slave
select must be de-asserted.

MAX CLOCK RATE This is the maximum clock rate supported by the configuration.

Table 2: SPI timings

The setup and hold timings are inherited from the underlying xCORE device. For details on these timing
please refer to the device datasheet.

1.1.1 Mode 0 - CPOL: 0 CPHA 1

Figure 1: Mode 0

The master and slave will drive out their first data bit on the first rising edge of the clock and sample on
the subsequent falling edge.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006232

Mode 1

Mode 1

SPI (3.0.2)

1.1.2 Mode 1 - CPOL: 0 CPHA 0

Figure 2: Mode 1

The master and slave will drive out their first data bit before the first rising edge of the clock then drive
on subsequent falling edges. They will sample on rising edges.

1.1.3 Mode 2 - CPOL: 1 CPHA 0

Figure 3: Mode 2

The master and slave will drive out their first data bit before the first falling edge of the clock then drive
on subsequent rising edges. They will sample on falling edges.

1.1.4 Mode 3 - CPOL: 1 CPHA 1

Figure 4: Mode 3

The master and slave will drive out their first data bit on the first falling edge of the clock and sample on
the subsequent rising edge.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006232

Mode 0

Mode 0

SPI (3.0.2)

1.2 SPI master timing characteristics

The application calls functions to begin a transaction (which asserts the slave select line) and to transfer
data. So the minimum time between these (t1) can be controlled by the application.

The inter-transmission gap (t2) is also controlled by the user application since the function to specify
the end of the transaction (i.e. the de-assertion of the slave select line) has an argument which is the
minimum amount of time before which another transaction can start.

1.2.1 Synchronous SPI master clock speeds

The maximum speed that the SPI bus can be driven depends on whether a clock block is used, the speed
of the logical core that the SPI code is running on and where both the MISO and MOSI lines are used. The
timings can be seen in Table 3.

Clock blocks MISO enabled MOSI enabled Max kbps (62.5
MHz core)

Max kbps (125
MHz core)

0 1 0 2497 3366

0 1 1 1765 3366

1 1 0 2149 2149

1 1 1 2149 2149

Table 3: SPI master timings (synchronous)

1.2.2 Asynchronous SPI master clock speeds

The asynchronous SPI master is limited only by the clock divider on the clock block. This means that for
the 100MHz reference clock, the asynchronous master can output a clock at up to 100MHz

Clock blocks MISO enabled MOSI enabled Max kbps (62.5
MHz core)

Max kbps (125
MHz core)

1 x x 100000 100000

Table 4: SPI master timings (asynchronous)

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006232

SPI (3.0.2)

1.3 Connecting to the xCORE SPI master

The SPI wires need to be connected to the xCORE device as shown in Figure 5. The signals can be
connected to any one bit ports on the device provide they do not overlap any other used ports and are all
on the same tile.

xCORE device

SCLK1 bit
port

MOSI1 bit
port

MISO1 bit
port

SS11 bit
port

SSn1 bit
port

...

Figure 5: SPI master connection to the xCORE device

If only one data direction is required then the MOSI or MISO line need not be connected. However,
asynchronous mode is only supported if the MISO line is connected.

The master component of this library supports multiple slaves on unique slave select wires. This means
that a single slave select assertion cannot be used to communicate with multiple slaves at the same time.

1.4 SPI slave timings

The logical core running the SPI slave task will wait for the slave select line to assert and then begin
processing the transaction. At this point it will call the master_requires_data callback to application
code. The time taken for the application to perform this call will affect how long the logical core has to
resume processing SPI data. This will affect the minimum allowable time between slave select changing
and data transfer from the master (t1). The user of the library will need to determine this time based on
their application.

After slave select is de-asserted the SPI slave task will call the master_ends_transaction callback. The
time the application takes to process this will affect the minimum allowable inter-transmission gap be-
tween transactions (t2). The user of the library will also need to determine this time based on their
application.

If the SPI slave task is combined will other tasks running on the same logical core then the other task may
process an event delaying the time it takes for the SPI slave task to react to events. This will add these
delays to the minimum times for both t1 and t2. The library user will need to take these into account in
determining the timing restrictions on the master.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006232

SPI (3.0.2)

1.5 Connecting to the xCORE SPI slave

The SPI wires need to be connected to the xCORE device as shown in Figure 6. The signals can be
connected to any one bit ports on the device provide they do not overlap any other used ports and are all
on the same tile.

xCORE device

SCLK1 bit
port

MOSI1 bit
port

MISO1 bit
port

SS1 bit
port

Figure 6: SPI slave connection to the xCORE device

The slave will only send and receive data when the slave select is driven high.

If the MISO line is not required then it need not be connected. The MOSI line must always be connected.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006232

SPI (3.0.2)

2 Usage

2.1 SPI master synchronous operation

There are two types of interface for SPI master components: synchronous and asynchronous.

The synchronous API provides blocking operation. Whenever a client makes a read or write call the
operation will complete before the client can move on - this will occupy the core that the client code is
running on until the end of the operation. This method is easy to use, has low resource use and is very
suitable for applications such as setup and configuration of attached peripherals.

SPI master components are instantiated as parallel tasks that run in a par statement. For synchronous
operation, the application can connect via an interface connection using the spi_master_if interface
type:

SPI
master

SPI
masterappapp

spi_master_if

Figure 7: SPI master task diagram

For example, the following code instantiates an SPI master component and connect to it:

out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main(void) {
spi_master_if i_spi[1];
par {
spi_master(i_spi, 1, p_sclk, p_mosi, p_miso , p_ss, 1, clk_spi);
my_application(i_spi[0]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the same component
instance. The slave select ports are also an array since the same SPI data lines can connect to several
devices via different slave lines.

The final parameter of the spi_master task is an optional clock block. If the clock block is supplied then
the maximum transfer rate of the SPI bus is increased (see Table 3). If null is supplied instead then the
performance is less but no clock block is used.

The application can use the client end of the interface connection to perform SPI bus operations e.g.:

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006232

SPI (3.0.2)

void my_application(client spi_master_if spi) {
uint8_t val;
printf("Doing one byte transfer. Sending 0x22.\n");
spi.begin_transaction(0, 100, SPI_MODE_0);
val = spi.transfer8(0x22);
spi.end_transaction(1000);
printf("Read data %d from the bus.\n", val);

}

Here, begin_transaction selects the device 0 and asserts its slave select line. The application can then
transfer data to and from the slave device and finish with end_transaction, which de-asserts the slave
select line.

Operations such as spi.transfer8 will block until the operation is completed on the bus. More infor-
mation on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-004440-PC).
By default the SPI synchronous master mode component does not use any logical cores of its own. It
is a distributed task which means it will perform its function on the logical core of the application task
connected to it (provided the application task is on the same tile).

2.1.1 Synchronous master usage state machine

The function calls made on the SPI master interface must follow the sequence shown by the state machine
in Figure 8. If this sequence is not followed then the behavior is undefined.

begin_transaction

transfer8

transfer32

end_transaction

Figure 8: SPI master use state machine

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006232

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide

SPI (3.0.2)

2.2 SPI master asynchronous operation

The synchronous API will block your application until the bus operation is complete. In cases where the
application cannot afford to wait for this long the asynchronous API can be used.

The asynchronous API offloads operations to another task. Calls are provide to initiate reads and writes
and notifications are provided when the operation completes. This API requires more management in
the application but can provide much more efficient operation. It is particularly suitable for applications
where the SPI bus is being used for continuous data transfer.

Setting up an asynchronous SPI master component is done in the same manner as the synchronous
component:

out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss[1] = {XS1_PORT_1B};
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;

clock cb0 = XS1_CLKBLK_1;
clock cb1 = XS1_CLKBLK_2;

int main(void) {
spi_master_async_if i_spi[1];
par {
spi_master_async(i_spi, 1, p_sclk, p_mosi, p_miso, p_ss, 1, cb0, cb1);
my_application(i_spi[0]);

}
return 0;

}

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006232

SPI (3.0.2)

The application can use the asynchronous API to offload bus operations to the component. This is done
by moving pointers to the SPI slave task to transfer and then retrieving pointers when the operation is
complete. For example, the following code repeatedly calculates 100 bytes to send over the bus and
handles 100 bytes coming back from the slave:

void my_application(client spi_master_async_if spi) {
uint8_t outdata[100];
uint8_t indata[100];
uint8_t * movable buf_in = indata;
uint8_t * movable buf_out = outdata;

// create and send initial data
fill_buffer_with_data(outdata);
spi.begin_transaction(0, 100, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out), 100);
while (1) {
select {
case spi.operation_complete():
retrieve_transfer_buffers_8(buf_in, buf_out);
spi.end_transaction();

// Handle the data that has come in
handle_incoming_data(buf_in);
// Calculate the next set of data to go
fill_buffer_with_data(buf_out);

spi.begin_transaction(0, 100, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out));
break;

}
}

}

The SPI asynchronous task is combinable so can be run on a logical core with other tasks (including the
application task it is connected to).

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006232

SPI (3.0.2)

2.2.1 Asynchronous master command buffering

In order to provide asynchronous behaviour for multiple clients the asynchronous master will store up
to one begin_transaction and one init_transfer_array_8 or init_transfer_array_32 from each
client. This means that if the master is busy doing a transfer for client X, then client Y will still be
able to begin a transaction and send data fully asynchronously. Consequently, after client Y has issued
init_transfer_array_8 or init_transfer_array_32 the it will be able to continue operation whilst
waiting for the notification.

2.2.2 Asynchronous master usage state machine

The function calls made on the SPI master asynchronous interface must follow the sequence shown by
the state machine in Figure 9. If this sequence is not followed then the behavior is undefined.

begin_transaction

init_transfer_array_8 init_transfer_array_32

transfer_complete

retrieve_transfer_buffers_8

retrieve_transfer_buffers_32

end_transaction

Figure 9: SPI master use state machine (asynchronous)

2.3 Master inter-transaction gap

For both synchronous and asynchronous modes the end_transaction requires a slave select deassert
time. This parameter will provide a minimum deassert time between two transaction on the same slave
select. In the case where a begin_transaction asserting the slave select would violate the previous
end_transaction then the begin_transaction will block until the slave select deassert time has been
satisfied.

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM006232

SPI (3.0.2)

2.4 Slave usage

SPI slave components are instantiated as parallel tasks that run in a par statement. The application can
connect via an interface connection.

SPI
slave

SPI
slaveappapp

spi_slave_callback_if

Figure 10: SPI slave task diagram

For example, the following code instantiates an SPI slave component and connect to it:

out buffered port:32 p_miso = XS1_PORT_1E;
in port p_ss = XS1_PORT_1F;
in port p_sclk = XS1_PORT_1G;
in buffered port:32 p_mosi = XS1_PORT_1H;
clock cb = XS1_CLKBLK_1;

int main(void) {
interface spi_slave_callback_if i_spi;
par {
spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, cb, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
my_application(i_spi);

}
return 0;

}

When a slave component is instantiated the mode and transfer size needs to be specified.

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM006232

SPI (3.0.2)

The slave component acts as the client of the interface connection. This means it can “callback” to the
application to respond to requests from the bus master. For example, the following code snippet shows
part of an application that responds to SPI transactions where the first word is a command to read or write
command and subsequent transfers either provide or consume data:

while (1) {
uint32_t command = 0;
size_t index = 0;
select {
case spi.master_requires_data() -> uint32_t data:

if (command == 0) {
// Not got the command yet. This will be the
// first word of the transaction.
data = 0;

} else if (command == READ_COMMAND) {
data = get_read_data_item(index);
index++;

} else {
data = 0;

}
break;

case spi.master_supplied_data(uint32_t data, uint32_t valid_bits):
if (command == 0) {
command = data;

} else if (command == WRITE_COMMAND) {
handle_write_data_item(data, index);
index++;

}
break;

case spi.master_ends_transaction():
// The master has de-asserted slave select.
command = 0;
index = 0;
break;

}
}

Note that the time taken to handle the callbacks will determine the timing requirements of the SPI slave.
See application note AN00161 for more details on different ways of working with the SPI slave component.

2.5 Disabling data lines

The MOSI and MISO parameters of the spi_master task are optional. So in the top-level par statement
the function can be called with null instead of a port e.g.:

spi_master(i_spi, 1, p_sclk, null, p_miso , p_ss, 1, clk_spi);

Similarly, the MOSI parameter of the spi_master_async task is optional (but the MISO port must be
provided).

The spi_slave task has an optional MISO parameter (but the MOSI port must be supplied).

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM006232

SPI (3.0.2)

3 Master API

All SPI master functions can be accessed via the spi.h header:

#include <spi.h>

You will also have to add lib_spi to the USED_MODULES field of your application Makefile.

3.1 Supporting types

The following type is used to configure the SPI components.

Type spi_mode_t

Description This type indicates what mode an SPI component should use.

Values SPI_MODE_0
SPI Mode 0 - Polarity = 0, Clock Edge = 1.

SPI_MODE_1
SPI Mode 1 - Polarity = 0, Clock Edge = 0.

SPI_MODE_2
SPI Mode 2 - Polarity = 1, Clock Edge = 0.

SPI_MODE_3
SPI Mode 3 - Polarity = 1, Clock Edge = 1.

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM006232

SPI (3.0.2)

3.2 Creating an SPI master instance

Function spi_master

Description Task that implements the SPI proctocol in master mode that is connected to a multiple
slaves on the bus.
Each slave must be connected to using the same SPI mode.
You can access different slave devices over the interface connection using the de-
vice_index parameter of the interface functions. The task will allocate the device
indices in the order of the supplied array of slave select ports.

Type [[distributable]]
void
spi_master(server interface spi_master_if i[num_clients],

static const size_t num_clients,
out buffered port:32 sclk,
out buffered port:32 ?mosi,
in buffered port:32 ?miso,
out port p_ss[num_slaves],
static const size_t num_slaves,
clock ?clk)

Parameters i an array of interface connection to the clients of the task.

num_clients
the number of clients connected to the task.

clk a clock block used by the task.

sclk the SPI clock port.

mosi the SPI MOSI (master out, slave in) port.

miso the SPI MISO (master in, slave out) port.

p_ss an array of ports connected to the slave select signals of the slave.

num_slaves
The number of slave devices on the bus.

clk a clock for the component to use.

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM006232

SPI (3.0.2)

Function spi_master_async

Description SPI master component for asynchronous API.
This component implements SPI and allows a client to connect using the asynchronous
SPI master interface.

Type [[combinable]]
void
spi_master_async(

server interface spi_master_async_if i[num_clients],
static const size_t num_clients,
out buffered port:32 sclk,
out buffered port:32 ?mosi,
in buffered port:32 miso,
out port p_ss[num_slaves],
static const size_t num_slaves,
clock clk0,
clock clk1)

Parameters i an array of interface connection to the clients of the task.

num_clients
the number of clients connected to the task.

sclk the SPI clock port.

mosi the SPI MOSI (master out, slave in) port.

miso the SPI MISO (master in, slave out) port.

p_ss an array of ports connected to the slave select signals of the slave.

num_slaves
The number of slave devices on the bus.

clk0 a clock for the component to use.

clk1 a clock for the component to use.

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM006232

SPI (3.0.2)

3.3 SPI master interface

Type spi_master_if

Description This interface allows clients to interact with SPI master task.

Functions
Function begin_transaction

Description Begin a transaction.
This will start a transaction on the bus. During a transaction,
no other client to the SPI component can send or receive data.
If another client is currently using the component then this call
will block until the bus is released.

Type [[guarded]]
void
begin_transaction(unsigned device_index,

unsigned speed_in_khz,
spi_mode_t mode)

Parameters device_index
the index of the slave device to interact with.

speed_in_khz
The speed that the SPI bus should run at during
the transaction (in kHZ).

mode The mode of spi transfers during this transaction.

Function end_transaction

Description End a transaction.
This ends a transaction on the bus and releases the component
to other clients.

Type void
end_transaction(unsigned ss_deassert_time)

Continued on next page

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM006232

SPI (3.0.2)

Type spi_master_if (continued)

Function transfer8

Description Transfer a byte over the spi bus.
This function will transmit and receive 8 bits of data over the
SPI bus. The data will be transmitted least-significant bit first.

Type uint8_t transfer8(uint8_t data)

Parameters data the data to transmit the MOSI port.

Returns the data read in from the MISO port.

Function transfer32

Description Transfer a 32-bit word over the spi bus.
This function will transmit and receive 32 bits of data over the
SPI bus. The data will be transmitted least-significant bit first.

Type uint32_t transfer32(uint32_t data)

Parameters data the data to transmit the MOSI port.

Returns the data read in from the MISO port.

Copyright 2016 XMOS Ltd. 18 www.xmos.com
XM006232

SPI (3.0.2)

3.4 SPI master asynchronous interface

Type spi_master_async_if

Description Asynchronous interface to an SPI component.
This interface allows programs to offload SPI bus transfers to another task. An asyn-
chronous notification occurs when the transfer is complete.

Functions
Function begin_transaction

Description Begin a transaction.
This will start a transaction on the bus. During a transaction,
no other client to the SPI component can send or receive data.
If another client is currently using the component then this call
will block until the bus is released.

Type void
begin_transaction(unsigned device_index,

unsigned speed_in_khz,
spi_mode_t mode)

Parameters device_index
the index of the slave device to interact with.

speed_in_khz
The speed that the SPI bus should run at during
the transaction (in kHZ)

mode The mode of spi transfers during this transaction

Function end_transaction

Description End a transaction.
This ends a transaction on the bus and releases the component
to other clients.

Type void
end_transaction(unsigned ss_deassert_time)

Parameters ss_deassert_time
The minimum time in reference clock ticks be-
tween assertions of the selected slave select. This
time will be ignored if the next transaction is to a
different slave select.

Continued on next page

Copyright 2016 XMOS Ltd. 19 www.xmos.com
XM006232

SPI (3.0.2)

Type spi_master_async_if (continued)

Function init_transfer_array_8

Description Initialize Transfer an array of bytes over the spi bus.
This function will initialize a transmit of 8 bit data over the SPI
bus.

Type void
init_transfer_array_8(uint8_t *movable inbuf,

uint8_t *movable outbuf,
size_t nbytes)

Parameters inbuf A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this
parameter is NULL then the incoming data of the
transfer will be discarded.

outbuf A movable pointer that is moved to the other task
pointing to the buffer area to with data to trans-
mit. If this parameter is NULL then the outgoing
data of the transfer will consist of undefined val-
ues.

nbytes The number of bytes to transfer over the bus.

Function init_transfer_array_32

Description Initialize Transfer an array of bytes over the spi bus.
This function will initialize a transmit of 32 bit data over the SPI
bus.

Type void
init_transfer_array_32(uint32_t *movable inbuf,

uint32_t *movable outbuf,
size_t nwords)

Parameters inbuf A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this
parameter is NULL then the incoming data of the
transfer will be discarded.

outbuf A movable pointer that is moved to the other task
pointing to the buffer area to with data to trans-
mit. If this parameter is NULL then the outgoing
data of the transfer will consist of undefined val-
ues.

nwords The number of words to transfer over the bus.

Continued on next page

Copyright 2016 XMOS Ltd. 20 www.xmos.com
XM006232

SPI (3.0.2)

Type spi_master_async_if (continued)

Function transfer_complete

Description Transfer completed notification.
This notification occurs when a transfer is completed.

Type [[notification]]
slave void transfer_complete(void)

Function retrieve_transfer_buffers_8

Description Retrieve transfer buffers.
This function should be called after the transfer_complete()
notification and will return the buffers given to the other task
by init_transfer_array_8().

Type [[clears_notification]]
void
retrieve_transfer_buffers_8(uint8_t *movable &inbuf,

uint8_t *movable &outbuf)

Parameters inbuf A movable pointer that will be set to the buffer
pointer that was filled during the transfer.

outbuf A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

Function retrieve_transfer_buffers_32

Description Retrieve transfer buffers.
This function should be called after the transfer_complete()
notification and will return the buffers given to the other task
by init_transfer_array_32().

Type [[clears_notification]]
void
retrieve_transfer_buffers_32(uint32_t *movable &inbuf,

uint32_t *movable &outbuf)

Parameters inbuf A movable pointer that will be set to the buffer
pointer that was filled during the transfer.

outbuf A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

Copyright 2016 XMOS Ltd. 21 www.xmos.com
XM006232

SPI (3.0.2)

4 Slave API

All SPI slave functions can be accessed via the spi.h header:

#include <spi.h>

You will also have to add lib_spi to the USED_MODULES field of your application Makefile.

4.1 Creating an SPI slave instance

Function spi_slave

Description SPI slave component.
This function implements an SPI slave bus.

Type [[combinable]]
void
spi_slave(client spi_slave_callback_if spi_i,

in port p_sclk,
in buffered port:32 p_mosi,
out buffered port:32 ?p_miso,
in port p_ss,
clock clk,
static const spi_mode_t mode,
static const spi_transfer_type_t transfer_type)

Parameters spi_i The interface to connect to the user of the component. The component
acts as the client and will make callbacks to the application.

p_sclk the SPI clock port.

p_mosi the SPI MOSI (master out, slave in) port.

p_miso the SPI MISO (master in, slave out) port.

p_ss the SPI SS (slave select) port.

clk clock to be used by the component.

mode the SPI mode of the bus.

transfer_type
the type of transfer the slave will perform: either
SPI_TRANSFER_SIZE_8 or SPI_TRANSFER_SIZE_32.

Copyright 2016 XMOS Ltd. 22 www.xmos.com
XM006232

SPI (3.0.2)

Type spi_transfer_type_t

Description This type specifies the transfer size from the SPI slave component to the application.

Values SPI_TRANSFER_SIZE_8
Transfers should by 8-bit.

SPI_TRANSFER_SIZE_32
Transfers should be 32-bit.

Copyright 2016 XMOS Ltd. 23 www.xmos.com
XM006232

SPI (3.0.2)

4.2 The SPI slave interface API

Type spi_slave_callback_if

Description This interface allows clients to interact with SPI slave tasks by completing callbacks
that show how to handle data.

Functions
Function master_ends_transaction

Description This callback will get called when the master de-asserts on the
slave select line to end a transaction.

Type void master_ends_transaction(void)

Function master_requires_data

Description This callback will get called when the master initiates a bus
transfer or when more data is required during a transaction.
The application must supply the data to transmit to
the master. If the spi slave component is set to
SPI_TRANSFER_SIZE_32 mode then this callback will not be
called and master_requires_data32() will be called instead.
Data is transmitted for the least significant bit first. If the mas-
ter completes the transaction before 8 bits are transferred the
remaining bits are discarded.

Type uint32_t master_requires_data(void)

Returns the 8-bit value to transmit.

Function master_supplied_data

Description This callback will get called after a transfer.
It will occur after every 8 bits transferred if the slave component
is set to SPI_TRANSFER_SIZE_8. If the component is set to
SPI_TRANSFER_SIZE_32 then it will occur if the master ends
the transaction before 32 bits are transferred.

Type void master_supplied_data(uint32_t datum,
uint32_t valid_bits)

Parameters datum the data received from the master.

valid_bits
the number of valid bits of data received from the
master.

Copyright 2016 XMOS Ltd. 24 www.xmos.com
XM006232

SPI (3.0.2)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2016 XMOS Ltd. 25 www.xmos.com
XM006232

SPI (3.0.2)

APPENDIX B - SPI library change log

B.1 3.0.2

• Update to source code license and copyright

B.2 3.0.1

• Minor user guide and documentation fixes

B.3 3.0.0

• Consolidated version, major rework from previous SPI components

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 26 www.xmos.com
XM006232

	SPI Library
	External signal description
	SPI modes
	Mode 0 - CPOL: 0 CPHA 1
	Mode 1 - CPOL: 0 CPHA 0
	Mode 2 - CPOL: 1 CPHA 0
	Mode 3 - CPOL: 1 CPHA 1

	SPI master timing characteristics
	Synchronous SPI master clock speeds
	Asynchronous SPI master clock speeds

	Connecting to the xCORE SPI master
	SPI slave timings
	Connecting to the xCORE SPI slave

	Usage
	SPI master synchronous operation
	Synchronous master usage state machine

	SPI master asynchronous operation
	Asynchronous master command buffering
	Asynchronous master usage state machine

	Master inter-transaction gap
	Slave usage
	Disabling data lines

	Master API
	Supporting types
	Creating an SPI master instance
	SPI master interface
	SPI master asynchronous interface

	Slave API
	Creating an SPI slave instance
	The SPI slave interface API

	Known Issues
	SPI library change log
	3.0.2
	3.0.1
	3.0.0

