
INMOS Limited

72 TDS 277 00 March 1991

D 7 c

F editor
Preliminary version

>".:.~; :~::::::: :;:;:::l'~';"

:;:m:; ;;;~:;:

;::m:! ~::::i

J: :;::.

:::::: :~:;:;

:;:;:: :;:;:;
":;:: :;;i'

:m:;: ~;;;;;:

~~::::: :;:;::~

,...~.:,:::::::: :;:;:;:::,:.,.-

•;:e
r

~I

~

~

~

;w
r

=-'
=
~.,~~'

:8
~'

=.-,'- .

~.-.. '.
~~~

:.~."'.'.'...•=~'

~.

=8,
~~,
-=-~

~

~~':.
~.\r.



Contents

72 TDS 27700

1.3.5 Scrolling and panning the screen

1.3.12 Defining and using keystroke macros

3
5
6
6
6
6
7
7

9

8
8
9

12

13

11
12

14

11

13

15

14

13

14

16
16

17
17

20
18
17

23

Preliminary version March 1991

Deletion
Insertion

Opening and closing folds
Browsing state

1.1.2 Typographical note
1.1.1 Introduction

1.1.3 Folding
1.1.4 The philosophy of F

1.3.3 Moving the cursor

1.1.5 Calling the editor from host operating system

1.1.7 Repainting the screen

1.2.3 Line types

1.3.1 Overvie~'V of editor functions

1.1.6 Keyboard layout

1.2.2 The screen display

1.1.8 Ending the session
1.1.9 Tutorial file

1.3.4 Changing case

1.2.1 Editor's view of a document

1.3.8 Fold creation and removal

1.3.2 Editor states

1.3.7 Inserting and deleting characters

1.3.6 Fold browsing operations

1.3.9 Deleting lines
1.3.10 Moving and copying lines
1.3.11 Search and replace

1.3.13 Editing multiple files
1.3.14 Command line commands
1.3.15 Language dependencies

Contents

F editor overview
1.1 The F editor

1.3 Editor functions

1.2 The editor interface

Editing keys - alphabetical reference

1

2

.,:,3

~~

.t'~- 't"... -

~!

-=~
a=3I

~:!

~3

..
-- - I

~~---~ i

~~
I

•et-::8
.~~

~

~:8

~~..
.~~

8[8
e j:.18

~'i - ---.....;:'

ep!.:8~i" .... -.,-:8
e=:8

I

INMOS document number: 72 TDS 277 00

Copyright © INMOS Limited 1991

e ,lWnos, IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectrontcs Group.



Contents

Appendices 37

A Keyboard allocations 39
A.1 IBM PC function keys 39
A.2 IBM PC keyboard layout 40
A.3 NEC PC keyboard layout 42
A.4 SUN4 keyboard layout 44

8 ITERM - terminal configuration file 47
8.1 The structure of an ITERM file 47
8.2 The host definitions 48

8.2.1 ITERM version 48
8.2.2 Screen size 48

8.3 The screen definitions 48
8.3.1 Goto X V processing 48

8.4 The keyboard definitions 50
8.5 F editor specific items 50
8.6 Setting up the ITERM environment variable FTERM 51
8.7 Example ITERMs 51

I

C Product parts lists and installation instructions 57

Index 59

F-'8
.-.=8
F!8
~

~

~~

~:

~

~
I"

~

~.

e:~.
I

~~

·r'4
-r:e
.+8
~3

.~
I

.7~'-r

.~
I

1 F editor overview
1.1 The F editor

1.1.1 Introduction

The F editor is a general purpose text editor which may be used for editing documents or
program source code in a variety of languages. It is a direct descendant of the editor for
occam source which was a principal component of the INMOS Transputer Development
System. F uses normal ASCII text files as supported in the host filing system. Several
files may be edited at the same time and there are facilities for transferring blocks of text
between these files. Host operating system commands may be called without leaving the
editor.

The editor is based on the concept of 'folding'. The folding operations allow the text to be
given a hierarchical structure ('fold structure') which reflects the structure of the program or
document under development.

This document starts by explaining folding. As with many systems, the best way to start
learning about F is to start using it. A tutorial file is provided and is discussed at the end
of this section.

1.1.2 Typographical note

Throughout this manual the convention of referring to function keys by name will be followed;
for example: ICURSOR upi or ILOCATE L1NEI. In fact these logical names may correspond to a
combination of physical keypresses at the terminal. The actual keys associated with these
function key names are given in the keyboard layout diagrams in appendix A. The mapping
is determined by the keyboard section of an ITERM file, see appendix B.

1.1.3 Folding

Just as a sheet of paper may be folded so that portions of the sheet are hidden from view,
the folding editor provides the ability to hide blocks of lines in a document. A fold contains
a block of lines which may be displayed in two ways: open, in which case the lines of the
fold are displayed between two marker lines (called creases), or closed, in which case the
lines are replaced by a single marker line called a fold line.

To create a fold the user inserts creases around the text to be folded; the fold is closed
automatically when the second crease is made. Any text may be placed on the fold line to
indicate what the fold contains; this text is called the 'fold header'.

A fold may be removed so that its contents are once again placed in sequence with the
surrounding lines.

72 TDS 277 00 Preliminary version March 1991

.~
I"

.~
'I

•..~~
*~~

~

72 TDS 27700 Preliminary version March 1991



Example: occam program with closed folds

Folds may contain text lines and also fold lines. Folds can be nested to a maximum depth
of 50.

An example of how folds are displayed by the editor follows. The fold line is marked
with three dots ( ••• ). A top crease is marked with the symbol {{ {. A bottom crease
is marked with }}}. There are two folds in the example program below: one marked
Declarations, and one marked initialise. In the second example the fold
initialise has been opened.

3

Preliminary version March 1991

} } }

{{{ Declarations
INT ch:
BOOL going:
PROC process ()

body of process

Example: entering a fold

Here the line marked body of process is a fold nested inside the fold Declarations.

When a file is written to disk each top and bottom crease line is converted into a comment
line, using a representation which depends on the language in which the text is written.
The curly bracket sequences {{ { and } } } are included within the text of these comment
lines so that their nature is immediately obvious if the file is printed.

Any document can be folded in such a way that most of the folds are shorter than the length
of the screen. Fold operations then become the principal method of traversing a document,
with screen scrolling operations used only for small local movement.

Because a closed fold is represented by a single line on the screen, some editor line
operations may act on fold lines as well as text lines. When such a~ operatio~ is applied
to a fold line it also applies to the fold contents. For example, deleting a fold line deletes
all its contents as well. This means that operations to transform the fold structure, (such
as moving, copying, and deleting folds) appear identical to the line operations which are
familiar to any user of a screen-oriented editor.

If desired, space may be saved in text files on disk by using TAB characters to represent
groups of 8 consecutive spaces at the start of text lines. This saving is particularly valuable
in highly indented occam source programs. All INMOS occam compilers interpret leading
TAB characters in text lines in source files as sequences of 8 spaces.

72 TDS 27700

Files with fold creases represented in this way can be created by Tools or Utility functions in
the INMOS Transputer Development System (TDS), which is the precursor of the F editor,
but uses a different representation of text files. TDS files can also be flattened into host
text files on a PC by using the occam toolset program iflat.

The F editor retains the concept of folding from its predecessor, the TDS editor. Users
of the TDS will notice two principal changes: firstly there is no longer a concept of nested
filed folds, although similar effects may be achieved using the power of F to edit several
files together and secondly the files are written to disk as ordinary host text files which are
accessible to all other tools and do not require any special naming conventions..

1.1 The F editor

1.1.4 The philosophy of F

~"'1 -

~,
"I

e;J8

.~
'1

~
"I

!~
~~

e?:-'~
""I

~~~

«:!~

~"8

~

~

,eg:;~

e:~

.~r

.~-'r---

.::=e-r--
·r~
.~~~

'''I.-:~
- - ,(--

.~r

.'-'~-;1-
~~

1 F editor overview

Preliminary version March 1991

2

. .. Declarations
SEQ

... initialise
WHILE going

process (ch, going)

Example: occam program with open told

. .. Declarations
SEQ

{{{ initialise
going := TRUE
input ? ch
} } }
WHILE going

process (ch, going)

A fold has an indentation associated with it; the fold and crease line markers begin at this
indentation level. No text may be inserted within the fold to the left of this indentation. In
occam the indentation of a line is significant; the folding features of the editor make it
relatively easy to change the indentation of part of an occam program.

The editor facilitates the systematic use of indentation in other block structured programming
languages, such as Ada, C or Pascal. Folding, in conjunction with the ability to nest folds,
provides a way of organising a large document or program as a hierarchy. The editor has
functions to 'enter' a fold, which opens the fold and moves down into it, and also to 'exit'
the fold, which closes the fold and returns to the level from which the fold was entered. For
example, entering the fold marked Declarations in the example above would make the
following lines the only visible lines on the screen.

72 TDS 27700

Modern editors often have windowing capabilities built in and allow different windows to

The editor is designed at its core level to be simple to use with a minimum number of magic
keys. As users bec?me more familiar with the editor, additional features can be used until
they have a working set which suits their personal style.

Folding is a mechanism which allows as much detail of a file to be concealed or revealed as
desired. Users of folding editors find that they are able to focus attention on critical areas of
dev~lo~ment in a, way not possible in a conventional 'flat' editor. An interesting side-effect
of thiS IS that folding users gradually rely less and less on paper listings of programs. This
section of the introduction offers an insight into the motives which governed the development
of F and hence some suggestions for using F in the most efficient manner.

~II termi,nal based INMO.S software tools use an ITERM file containing keyboard mapping
Information to map functions onto keystrokes so that the tools may be written in a terminal
and system !ndepend~nt manner. F ret~ins and slightly extends this concept. F is expected
~o be used In three different work environments; firstly, a user who has personalised the
Interface to the editor, secondly, a user logging into a system-wide facility which uses a
st,andardised interface to the editor, and thirdly, a user who uses a system-wide facility but
wishes to have some degree of personalisation.

5

Preliminary version March 1991

1.1 The F editor

The editor is called from the host operating system as an executable program or a command
file. The latter mechanism is used when it is necessary to set and restore components of
the operating environment required by co-existing software. The command line should
include as parameters a list of one or more names of files to be edited. Ensure that this
program or command file will be called whenever f is typed.

F assumes the existence of a host environment variable FTERM containing the name of an
appropriate ITERM file, see appendix B. If the ITERM file cannot be found, or is not in the
correct form, the editor will fail to start up. A minimal ITERM file ASCII. ITM and corre
sponding keyboard help file ASCII. HLP are provided in case the editor is being installed
in an unfamiliar operating environment. This requires a terminal whose keyboard can gen
erate ASCII control codes and ANSI cursor move codes only. When using ASCII. ITM,
function keys are emulated by escape sequences using ESC, Ctrl-A and 'Ctrl-W as prefix
codes. It should then be possible to create a better ITERM file using the F editor, especially
with the help of the IDISPLAY KEYI key.

INMOS welcomes suggestions for future versions of this editor. A particular area that could
be expanded in a variety of ways is the mechanisms for searching and replacing, including
provision for more versatile pattern matching, multiple file searches, global replacement,
etc.

show different views of the same file. F assumes that a windowing environment will always
provide more sophisticated facilities than could be incorporated into the editor and thus
provides only the mechanism to switch between files. On a folding editor, multiple positions
in a single file are undesirable because the view of the file depends on the state of lines
within the file (for example one view could close a fold containing the current position of
another view).

1.1.5 Calling the editor from host operating system

An F ITERM file in turn identifies an F startup file. If the same ITERM file is to be used
from multiple directories it may be desirable to ensure that full directory paths are used for
the name of the startup file and further files which are mentioned therein. If an environ
ment variable FSTART is defined, the file named by this variable is used as startup file in
preference to any defined in the ITERM file.

The startup file identifies the command history file. It also defines the conventions used in
different languages for converting crease lines into comments. As a file is read by F the
language convention will be determined from the first line containing 3 curly braces. If no
such line is found the convention will default to the first in the list.

72 TDS 27700

A set of up to 10 keystroke macros may be defined in macro folds in the startup file and are
associated at startup time with the ten tool keys. These enable users to create compound
operations of their own design for commonly used operations, such as commenting out
chunks of program, etc. A few such macros are shipped in the default startup file as

~
p
~"I

~- ,,~

~

ez-~'III

~~
"1

~
~I

~~
"1

err"
~~

~I

~
.~

"I

~,
~ !

~,i:e

e~,,! -

• 3
'I

~~
II

.~~
~I

.t~
f -

~~-r''''~
I

J
.~

;'1'

.~
-*1":'-"

~

1 F editor overview

Preliminary version March 1991

4

To accommodate these three modes F assumes default names of information files which
can be superseded at a number of levels. The primary information file is the ITERM file
~hich ?Ontrols the key mappings. The ITERM file can be used to reference an F startup
file which controls how F interprets folds in the file being read. The startup file could be
system-wide but a user may wish to extend the fold marker set chosen and so can override
the reference to the startup file by defining an environment variable to point at a file of his
own choosing. The startup file references the name of a command history file.

Th~ command history file is opened at the start of an editing session. By default it contains
a list of execu.table comm~n~s - cO,mmands which operate on files rather than editing
commands which operate Inside a file. If the command history file is kept as a global
reference from a standard startup file it would not be edited by an individual user. The
command file can, however, be a reference to a local file in which a user can retain a list
of commands issued on a regular basis in that environment. For example, a list of all the
source files in a particular directory along with a backup command and a call to a make file
could be retained in a command history file.

The editor is intended to be consistent so that all commands behave in the same manner in
~II environments. An example of this consistency is shown in the handling of the command
file, ~~d the help file which being ordinary text files can both be navigated using the editing
facIlities of F. ,Because the command history file is no different from any other file, all
c~m,mands which can .be ob,eyed f~om the command history file can also be obeyed from
~Ithln ~ norr:nal text file being edited. As a consequence opening additional files and
Interacting with the host system can be done with a minimum of keystrokes and special
states.

72 TDS 27700

1.1.9 Tutorial file

1.1.8 Ending the session

The tutorial file included with the system provides an introduction for those starting to use

A special function key IDISPLAY KEYI is provided to faciliate the setting up of an ITERM file
for an unfamiliar keyboard type or host environment.

7

Preliminary version March 1991

f ftutor.oee

It may be helpful to have a printed form of the appropriate keyboard layout available. Key
board layouts appear in appendix A.

The contents of the file will then give you detailed instructions on how to proceed.

The tutorial file does not assume any knowledge about F so it can be worked through
before reading the rest of the chapter.

the system. The file is called FTUTOR. OCC. This file contains a detailed practical example
on using F and anyone new to this system is strongly advised to work through it.

This section defines some terms which are used to describe the behaviour of the editor
keys. Figure 1.1 shows a graphical representation of these terms.

To use the tutorial move to the appropriate directory, check that the environment variable
FTERM is set up, make a backup copy of ftutor . oee and then type:

to start the system.

1.2 The editor interface

The rest of this chapter describes the editor interface in some. detail, and then describes
the facilities for calling other tools from within the editing environment.

At any time during the session, the editor has a view of the document, consisting of a
sequence of text lines, closed folds and open folds. This is called the current view.

The current view of the document at any time is principally determined by the fold oper
ations which have been carried out. At the start of the session the current view contains
a sequence of lines at the top level of the first file mentioned on the command line when
F was called from the host operating system. Other files mentioned on the command line
will be accessible by means of 'NEXT FILEI or IPREVIOUS FILEI. These files, and any others
subsequently added, are conceptually held in a ring of files.

1.2.1 Editor's view of a document

1.2 The editor interface

Whenever 'ENTER FOLDI is pressed on a fold line, the current view is stacked up, and the
contents of the fold become the current view. After editing the contents of the fold it is
possible to return to the previous view by using 'EXIT FOLDI.

72 TDS 27700

~

~I '

e=;l

~

e::3

~

•.h.-o.~....,;

."~-=-,
--' ~. - -----

e--=,
e=t
..-==:~~_~h

e·,=~J

.=:3
e.-~l

I

e.·-c}
I...... ~-.
~-,,/

e=~

e-=:!
I "

~=-~

•==!I

• <!

.'~~~I..~~"'I~-:>-

~---~

1 F editor overview

Preliminary version March 1991

6

examples.

1.1.6 Keyboard layout

1.1.7 Repainting the screen

The function key IREFRESHI repaints the entire screen. This may be useful to check that
the editor is driving the screen correctly, or if the terminal is accidentally switched off and
on again. If the editor is running in a windowed environment this key is used to resize the
display if the size of the window is changed.

To display a ~ap of.the keyboard layout, press the IHELP! function key. A message identifying
the help key IS copied from the ITERM file or the startup file to the top of the screen at the
start of an editing session. A keyboard map, which is also a folded text file, will appear;
you can return to the normal editor display by pressing the IFINISH! key (usually mapped
onto ICTRL-xl). Keyboard layouts for common hosts are also shown in appendix A.

The information in the keyboard map display is read from a file whose name may appear
in the startup file, or by default is derived from the name of the ITERM file by replacing
the suffix (usually • i tm) by . hlp. If the user changes the keyboard mapping then an
appropriately modified keyboard map file should be created. If no keyboard map appears,
check that a suitable file will be located by these rules.

If a single file is being edited, pressing IFINISHI saves the file and returns to the operating
system. If folds have been entered, it is not necessary to exit them before IFINISH! can be
used.

If more than one file is being edited (see below) IFINISHI saves the current file and the next
in the ring becomes current. Repeated use of IFINISHI will save all files being edited. There
are also named commands which can terminate an editing session in a variety of ways,
see 1.3.14.

If you have not yet successfully installed the software you may now need to refer to appendix
C or to the delivery manual of the accompanying toolset.

72 TDS 27700

Fold line

Fold creation mark !!!

Bottom crease } } }

Top crease { { {

9

Window displayed
f+--on screen

~Start of current
enclosing fold

~End of current
enclosing fold

~End of current view

Preliminary version March 1991

SEQ
ss.write.text.J.ine (screen,messale

VAL message IS "HeJ.J.o WorJ.d!":
BOOL going:

(ch <= (INT '-'»
ss.write.char (screen, BYTE ch)

~UE

going := FALSE

}}} exampJ.e.occ

Current view
{{{ exampJ.e.occ
-- This foJ.d contains a simpJ.e
-- occam 2 program
-- which says heJ.J.o
{{{ program in here
#INCLUDE "streamio.inc"
fUSE "streamio.J.ib"
PROC heJ.J.o (CHAN OF KS keyboard,

CHAN OF SS screen)

Figure 1.1 Editor's view of a document

heJ.J.o(keyboard, screen)
}} }

~urrent line and
~~~~~o~i~n~g~:=~~~~~~~~~~~~~~1 ~urre~~arncter

WHILE going
INT ch:
SEQ

ks.read.char (keyboard,ch)
IF

(ch >= (INT ' '» AND

1.3 Editor functions

This section introduces and describes the functions provided by the editor. A detailed listing
of the keys used by the editor is available in chapter 2. The mapping of key names to keys
on the keyboard is given in appendix A.

1.3 Editor functions

72 TDS 277 00

The editor accepts and acts on sequences of keystrokes from the user. If any of the
sequences are not recognised the terminal bell rings and/or a message appears in the
message line. The table below provides an overview of the available editor functions, which
are described in detail in the following sections. On-line versions of this table enhanced

1.3.1 Overview of editor functions

.r!8

ez:~
~ 1

~~

~

~
"I

~~
'I

~I -

.-~-:8

~~r-=~

.~I·'.
~
~'-=?.J_

'I '

.~~
'I

~

A!I-~
~,

~-! ,,;

~I

-~
e~'II.~~

-fi----e:

e~~

.~

.~

~...

~~"

~~
~~~

1 F editor overview

Preliminary version March 1991

8

1.2.2 The screen display

The current column is the column which the cursor is on. The current line is the line which
the cursor is on. The current enclosing fold is the fold which contains the current line, or, if
the current line is a crease line, the fold formed by that crease and its partner. The current
file is the file from which the text in the current view was read, and to which, by default, it
will be saved at the conclusion of the edit.

The cursor is used to point to a position in the screen window; functions are provided to
move the cursor around the screen. The cursor cannot be moved below the end of the
current view.

Five general types of line may be displayed; they are text lines, top creases, bottom creases,
fold lines and fold creation marks.

The screen is divided into two parts. The top line of the screen is used to display messages.
The rest of the screen displays a 'window' into the current view (that is, it displays as many
lines of the current view as will fit on to the screen).

The editor provides functions to move the screen window up and down the current view,
thus providing a scrolling facility. These functions do not change the editor's view of the
document, merely what is visible in the screen window.

1.2.3 Line types

Fold lines and crease lines start with a marker symbol. The different types of marker
symbols are:

All marker symbols consist of the textual symbol above, plus two following spaces to give
the symbol a width of five characters. The marker symbols of the outermost creases of a
file also include the name of the file. The marker is protected from change by the editor.
Text may be written onto a crease line beyond the marker symbol. The text on a top crease
is also visible when the fold is closed. The text on a bottom crease is only visible when the
fold is open (and is lost if the file is reimported into the TDS).

72 TDS 277 00

1.3.3 Moving the cursor

ICURSOR LEFTI moves the cursor left one column.

ICURSOR RIGHTI moves the cursor right one column.

ICURSOR upi moves the cursor up one line.

11

At certain times when using the editor, only a limited subset of the editor functions may
be available. For example, a fold is created by two presses of a key called ICREATE FOLDI;

one to mark the top of the fold and one to mark the bottom of the fold. Between these two
presses normal editing operations are not allowed; the only keys which the editor will accept
are those needed to move the cursor up and down and the help key. All other keys cause
a warning message to be displayed. When the editor is only accepting a restricted subset
of keys, this is known as an editor 'state'. It is indicated by a message on the top line of the
screen which persists until the operation requiring the special state has been completed.
The default editor state is Editinq. This state has two additional flags defining whether
or not the file has been changed since being read from disk, and whether or not leading
spaces are to be compressed into TABs on output. In the state message an asterisk *
after Editing shows that the file has been changed and a ! that space compression will
be done. The ! flag is initialised according as TABs are found in the file when it is read
and is toggled by the ITOGGLE TABSI key.

The normal cursor positioning functions are used to move the cursor around the screen
window. The cursor may be moved into any part of the screen, except the message line.
In addition there are functions to move the cursor to the start or the end of the current line,
and one word to the right or left on the line.

In the rest of this chapter, where a function results in a change of editor state, this is
indicated in the appropriate section.

1.3.2 Editor states

The cursor keys when used at the top and bottom of the screen cause the screen to scroll.
Separate screen scrolling functions can be used to scroll the screen up and down the
current view; these are described in the next section.

1.3 Editor functions

ICURSOR DOWNI moves the cursor down one line.

I

tJftI
~

I

e::::8

e=8

e-' 8
I

e:=8_I--,'.I

_'~-'8
I

.~-.I

'-+8
-=c8

I

e=8
I -.

.~-·'8
I

e=~~
I

e=J'8
I

e~
I -

.~-~
I

10 1 F editor overview

with the names usually found on the keytops are included in most versions of the keyboard
help files shipped with the software.

Moving the cursor ICURSOR upi ICURSOR DOWNI IWORD LEFTI ITOP OF FOLDI

ICURSOR LEFTI ICURSOR RIGHTI IWORD RIGHTI !BOTTOM OF FOLD!

ISTART OF L1NEI lEND OF L1NEI

ITO UPPERI ITO LOWERICase changing

Scrolling the screen ILiNE upi ILiNE DOWNI

IPAGE upi IPAGE DOWNI

Fold browsing IENTER FOLD! IEXIT FOLD! !BROWSEI

10PEN FOLDI ICLOSE FOLDI

Inserting and Character IRETURNI IDELETE WORD LEFTI

keys
deleting characters IDELETEI IDELETE RIGHTI IDELETE WORD RIGHTI

IDELETE TO END OF L1NEI

Fold creation ICREATE FOLDI IREMOVE FOLDI

and removal

IDELETE L1NEI IRESTORE L1NEIDeleting lines

IMOVE L1NEI ~@ IcoPY PICKIMoving and IPICK L1NEI

copying lines IpUTI

Search and replace INEW SEARCHI INEW REPLACEI ILOCATE L1NEI

ISEARCHI IREPLACEI

IDEFINE MACROI ICALL MACROIDefining and using ISAVE MACROI IGET MACROI

a keystroke macro ITOOLOI .. ITOOL91

ISTART OF L1NEI places the cursor on the first significant character of the current line (normally
the first non-blank character) .

lEND OF L1NEI places the cursor after the last significant character on the current line (which
is normally the last non-blank character).

File changing

Escapes

72 TDS 27700

ILiST FILESI

IDISPLAY KEYI

INEXT FILEI

ICOMMANDI

!TOGGLE TABS!

IPREVIOUS FILEI ISAVEI

~ !COMMENT STYLEI

IREFRESHI

Preliminary version March 1991

fb~
'I

.~.=-~I

• J.'~
I

.~
'I -

.j'.~'r

.~~~
~-~

72 TDS 27700 Preliminary version March 1991

IWORD LEFTI moves the cursor one word to the left of the current cursor position.

IWORD RIGHTI moves the cursor one word to the right of the current cursor position.

IBOTTOM OF FOLDI moves the cursor to the bottom crease line of the current enclosing fold.
If the bottom crease line is not within the screen window the screen will be scrolled.

ITOP OF FOLDI moves the cursor to the top crease line of the current enclosing fold. If the
top crease line is not within the screen window the screen will be scrolled.

131.3 Editor functions

If a line extends beyond the rightmost writable position in a line, which may be different
from the rightmost visible position, a Long line message will be displayed.

There are no keys which explicitly control panning, but if actions are taken which drive
the cursor off the sides of the screen the whole screen will be repainted with the cursor
position on the screen and an indication of how many columns are missing at the left in the
message lin.e at the top of the screen. There is an absolute maximum line length of 511
characters which can never be exceeded and it is recommended that the need to pan is
minimised by keeping lines within the capacity of the screen.

Opening and closing folds

1.3.6 Fold browsing 9perations

'Ie:r
e:;:8

I

I. ~-.
I

~
I

• ~. 8
I

edr-8
i
I

.~.
I
I

1 F editor overview12

Two keys, IWORD LEFTI and IWORD RIGHTI, are provided to move the cursor one word at
a time. A word consists of a sequence of alphanumeric characters or adjacent non
alphanumerio characters. More precise definitions of the word move operations are given
in chapter 2 under the definitions of the relevant keys.

1.3.4 Changing case

There are two keys for changing the case of alphabetic characters. These both change the
case if a character is currently a letter of the opposite case, and then move the cursor one
place to the right. Other characters are not changed.

ITO LOWERI changes a character from upper to lower case.

This section describes the keys which are used, along with the cursor positioning keys, to
move around a document. There are two pairs of fold browsing operations, one pair being
IENTER FOLDI and IEXIT FOLDI, and the other pair being 10PEN FOLDI and ICLOSE FOLDI.

The folding features of the editor give a document a hierarchical structure. The keys
IENTER FOLDI and IEXIT FOLDI are used to move around the hierarchy. When 'ENTER FOLDI is
pressed on a fold the screen is cleared and the contents of the fold become the current
view. The previous view is saved, and can be returned to by using 'EXIT FOLDI

ITO UPPERI changes a character from lower to upper case.

1.3.5 Scrolling and panning the screen

Scrolling can occur as a side effect of some other operations or can be explicitly requested.
Panning always occurs as a side effect of cursor moves off the sides of the screen.

The functions introduced below scroll the screen up and down the current view by a line or
a page at a time. A page is the number of lines in the screen window.

IENTER FOLDI is appropriate when the fold contains a reasonably self-contained piece of
text. However, it may often be more desirable to view a piece of text in its surroundings;
for example the body of a WHILE loop may be folded up, and it may be best viewed with
the WHILE condition displayed above it. 10PEN FOLDI and 'CLOSE FOLDI are provided for this
purpose.

10PEN FOLDI inserts the contents of a fold between the surrounding lines, bracketted with
top and bottom creases. ICLOSE FOLDI may be used to close an opened fold, and replace
the displayed contents with a single fold line.

IPAGE upi moves the screen one page up the current view, or to the top of the current view,
whichever is the nearest.

ILiNE DOWNI moves the screen one line down the current view, if there are lines in the current
view below the screen, otherwise behaves as cursor down.

IPAGE DOWNI moves the screen one page down the current view, or to the bottom of the
current Iview, whichever is the nearest.

ILiNE upi moves the screen one line up the current view, if there are lines in the current view
above the screen, otherwise behaves as cursor up.

Preliminary version March 1991

Browsing state

If there are open folds within a fold v/hich is exited, then these folds will remain open if the
exited fold is reentered during the current session.

72 TDS 27700

Sometimes when viewing an existing document it is useful to set the editor into a state so
that you can not accidentally change the document. The key IBROWSEI can be used to get
into and out of this state. While in this state a message is displayed on the message line,

IENTER FOLDI is useful where a quick return up to a particular position is required; doing an
IENTER FOLDI at that position will allow, at some future time, an IEXIT FOLDI to cause a return
back up to that position.

• ~·:e
I ~.

~.~

~.~

.~~=8

&:---=~-~.'-'.'
':~·~--~7

.~-~

.--=~=e

Preliminary version March 199172 TDS 27700

Deletion

Insertion

and all editor functions which could change the document are disallowed.

1.3.7 Inserting and deleting characters

15

Preliminary version March 1991

After ICREATE FOLDI has been pressed once, the editor changes its state and all editing
functions other than vertical moves or searches are suspended until this key has been
pressed again to complete the process of fold creation.

1.3 Editor functions

Fold creation is achieved by marking the top and bottom of the sequence of lines required
to form the contents of a fold. Two presses of ICREATE FOLD/ are needed to do this. Firstly
the cursor should be placed on the top line and ICREATE FOLDI pressed. A fold creation
mark will appear. The cursor should then be moved to the line below the bottom line to be
folded, and (CffEATE}OD5l pressed again. Alternatively the bottom crease may be marked
first and the cursor moved up to the position for the top crease. The effect is identical
whichever order the creases are marked.

Deletion can take place a word at a time. A word can be considered to be a sequence of
alphanumeric characters or adjacent non-alphanumeric characters, as for cursor movement.

In a valid fold, lines between the top and bottom lines must be indented at least as far as the
indentation of the fold to be created. When a fold is created, its indentation is determined
by the position of the cursor within the line or, if there are non-blank characters to the left
of this position, the leftmost non-blank character within the new fold, whichever is the less.

Once a fold has been created, it is good practice to add a comment by inserting text after
the fold marker. This text is known as the fold header. Text may be moved from the fold
header to the following line by using IRETURN/ or in the opposite direction by using IDELETEI

at the start of the l,ine.

A created fold has an indentation associated with it, given by the indentation of the fold
marker when it is closed, and the indentation of the creases when it is open. It is not
possible to insert text to the left of this indentation.

1.3.8 Fold creation and removal

A fold can be removed by placing the cursor on a fold line and pressing IREMOVE FOLD/.

The fold contents are inserted between the lines above and below the fold.

An empty fold can be created above the current line by pressing ICREATE FOLD/ twice in
succession.

72 TDS 27700

IDELETE WORD RIGHTI deletes the word to the right of the cursor.

IDELETE WORD LEFTI deletes the word to the left of the cursor.

If ICREATE FOLDI is pressed accidentally the fold must be completed by pressing
ICREATE FOLDI again. The resulting empty fold may then be removed.

+-=r.
~--f8
e:c8

'I

~

~.

~-.
j

~
I

~8

.~

~~'8,[.~
'I

.~>~.~
~I

.~
'r

.~-r

~~

&~~
~~---:-

~:=a~~,~~
1011

.~)
"I

.'~"1
I

~-~
~~Y

~~

1 F editor overview

Preliminary version March 199172 TDS 27700

1 Text may not be be inserted when the cursor is on a fold or crease marker, when the
cursor is on a fold creation mark line, or when the cursor is to the left of the leftmost
column of an open fold or there are already 511 characters in the line (including
indentation spaces).

2 The indentation of a closed fold may be changed by inserting or deleting spaces to
the left of the fold marker symbol. No other text may be inserted there.

Spaces may be deleted to the left of a closed fold to change the indentation of the fold.

Character deletion has no effect when the cursor is·on part of a marker symbol, or is to the
left of the leftmost column of an open fold.

IDELETE TO END OF L1NEI deletes all text from the character at the cursor, to the last signifi
cant character on the line, inclusive. The cursor remains in the same position.

IDELETE RIGHTI deletes the character at the cursor. All the characters to the right of the
cursor are moved left by one place. The cursor remains in the same position.

IDELETEI is used to delete the character to the left of the cursor. This causes the character
at the cursor and the rest of the line to the right to be moved one place to the left. If IDELETEI

is used at the extreme left of a line it concatenates the line with the preceding line, if that
line is not too long. It has no effect if used at the extreme left of a fold or crease line or
within a fold marker.

A character or space can be inserted in the current column position and the cursor, the
character at the cursor and all subsequent characters on the line are moved right by one
place. If a character is inserted beyond the end of visible text on a line, spaces are implicitly
inserted before it.

IRETURNI is used to split lines and insert blank lines. It has no effect if used within the fold
marker on a fold line.

In general, characters may be inserted or deleted at the cursor position, but there are some
exceptions, as follows:

14

1.3.10 Moving and copying lines

IcoPY L1NEI duplicates the current line, inserting the copy in the text.

IDELETE L1NEI deletes the current line from the document. If this is a fold line, the fold and
all its contents are deleted. Since this makes IDELETE L1NEI a very powerful operation, it
should be used with care.

There is a function IRESTORE L1NEI to undo a deletion, restoring the last deleted line at the
current position in the document. A stack of deleted lines is maintained by the editor and
so these lines may be restored in the reverse order of deletion.

17

Preliminary version March 1991

1.3 Editor functions

1.3.11 Search and replace

When the strings are defined it is possible to locate the next instance of a copy of the search
string in a forward scan from the cursor position by pressing ISEARCHI. If it is required to
replace this string by the replace string this may be done by pressing IREPLACE! with the
cursor on the matched string.

The key ILOCATE L1NEI may be used to locate a line by its number. If an empty string is
inserted then the number of the current line will be displayed. If a string containing decimal
digits is entered these will be turned into an integer and the line with this number will be
located.

INEW SEARCHI and INEW REPLACEI allow the user to define the current search and replace
strings, respectively. These strings should be entered on the message line in response to
the relevant prompts. Each string is terminated by IRETURNI. When a new search string is
defined, a search is then performed for the next matching occurrence of the search string
in the current view. When a new replace string is defined and the cursor is on a match of
the search string, this is replaced by the replace string.

1.3.12 Defining and using keystroke macros

IpUT! puts down the contents of the pick buffer at the current position in the document.
It inserts, above the current line, the sequence of lines placed in the pick buffer using
IPICK L1NEI and IcoPY PICKI. The pick buffer is cleared. If there are no lines in the pick buffer
IpUTI has no effect on the document.

72 TDS 27700

Any number of files may be edited concurrently. Files being edited are organised as a ring.
New files may be added to the ring or removed from it by command line commands, see
below.

The key IDEFINE MACRO! can be used to define a sequence of keys (which are commonly
going to be used together during a session) and assign the sequence to a single keystroke.
Two presses of IDEFINE MACRO! are needed to define a key sequence; the required keys
(which may not include IDEFINE MACROI or ICALL MACROI) should be pressed between the
two presses of !DEFINE MACROI. The sequence may contain up to 255 keys. Any previ
ously defined macro is forgotten. The defined macro sequence may be invoked using the
ICALL MACROI key. The currently defined macro may be saved in a new fold above the
current line by pressing ISAVE MACRO!. A saved macro may be recovered from a fold by
pressing IGET MACROI. A keystroke macro which is of permanent value may be stored in
the startup file or elsewhere for future use. In the startup file such a macro may be given
a special name which will associate it with one of the tool keys ITOOLOI .. ITOOL9!.

1.3.13 Editing multiple files

~
I

e=-~
I

e:=::~
,I

.e+:8
I

• ~- 8
T

~.i,r
~--=+-=-.-~

I.8
~f8
@+8

1

~8

.-j8
/' I.~~.
.~8

e ., 8
e=.
.~.,

.~8

-=8
.~it

.~=8

• ~:8
I

'~~=8>-~I~- --

.~=-~
I

.~-~=8

1 F editor overview

Preliminary version March 1991

16

Using the above keys, it is difficult to collect a number of different parts of a document
before putting them down together. Here IPICK L1NEI and IcoPY PICKI are more appropriate.
These make use of a different buffer (the 'pick buffer') that is cumulative. This enables the
user to gather together, in the buffer, various pieces of text that can be put down in one
place. IpUTI is used to put down the text in the buffer, which is emptied at the same time.

Often when using an editor it is necessary to make structural changes to the text, moving
lines and blocks of lines around. In F the representation of folds as lines on the screen
means that substantial structural changes can be made to a document in the same manner
as the reorganisation of lines. An individual line can be picked up, or a block of lines can
be folded and then picked up.

The functions IcoPY L1NEI and IMOVE L1NEI are used to copy and move sections of the doc
ument from one place to another. A text line or fold can be duplicated with the IcoPY L1NEI

function, or moved to another position in the document using IMOVE L1NEI.

1.3.9 Deleting lines

Two presses of IMOVE L1NEI are needed to move a line from one part of the document to
another; one to pick up the line, and one to put it down. If· a sequence of lines is to be
moved, the lines should be folded up first. A buffer (the 'move buffer') is used to store the
line between the two operations. There is no need to go and put the line down immediately;
the buffer will be retained until the next press of IMOVE L1NEI, which may be after switching
to another file.

72 TDS 27700

IPICK LINE! is used to pick up a line, which may be a fold line, so that it may be moved to
another place in the current document, or in another document. It removes the current line
from the document and appends it to the end of the pick buffer.

IcoPY PICK! is used to copy a line, which may be a fold line, so that it may be moved to
another place. It makes a copy of the current line and appends it to the end of the pick
buffer. As the document is not changed it may be used in Browsing state.

The internal F commands are:

1.3.14 Command line commands

At any time the current file may be saved to disk by pressing ISAVEI.

If a command is issued which terminates the edit of the current file, and there are other
files in the ring, then the next fife in the ring becomes the current file.

19

Preliminary version March 1991

3 saveall
Saves all currently open files.

8 exit filename
Saves the current file on disk, using the name given, and then removes this file from
the ring of current files. The next file becomes current. If the file name is omitted
the file is saved where it came from (equivalent to IFINISHD

7 goto filename
The named file, which must correspond to a file in the ring of current files becomes
the current file.

6 get filename
This command quits the edit of the current file without saving its current state and
starts to edit the named file. As the edit is lost it is always safe to write this command
onto a fresh line within the editing window and obey it from there.

9 exitall
Performs exit on all currently open files and terminates the editor.

4 f filename
Adds the named file to the ring of current files and makes it current. If it is already
in the ring, the user is given the option of switching into the current copy or taking
a fresh copy from the file and displaying it in the Browsing state.

5 #include filename
As f. The filename may optionally be enclosed between single or double quotes.

10 quit
Abandons the editing of the current file without saving it. As the edit is lost it is
always safe to write this command onto a fresh line within the editing window and
obey it from there. The next file becomes current.

11 quitall
Performs quit on all currently open files, thereby terminating the edit session
without saving any edits made since previous saves.

12 system host command
Sends the host command to the host operating system. The word system may
be omitted if the host command does not clash with an F command name. The
behaviour of this command depends on the behavior of the system call in the
library of the C system used to compile the F editor.

1.3 Editor functions

When an attempt is made to edit the same file twice, the editor will test for identity by looking
for exact equality of file name. If identity is detected the user will be given the option to
take a fresh copy of the most recently saved version or to go to the currently open copy.
Extreme care is required if two copies of the same file are being edited, as the final state

72 TDS 27700

..-=:8
I

-==
e=8

~.~-..-.~_.•
..·-8

_I
,e:==-'4

~.

.@=-.
/ I

-=+:
e=J-8

I

-.~J-...~-=-=-~~

'e:r=8
I

e=c8
I

eI:8
I

.=~~8
I.~~
!

~ .•_~"8

e J ~8
I

ez~=8
r

.~
'I -

1 F editor overview

Preliminary version March 1991

18

2 save filename
Saves the current file on disk, using the name given. If issued from the command
window the file saved will be the file from which the command window was entered.
If no name is given, writes it back .16 the file. it was read from: See also ISAVEI.

1 insert filename
Inserts a copy of the text in the named file above the current line. If issued from the
command window the insertion will be in the file from which the command window.
was entered.

To switch to the next file in the ring press INEXT FILEI. To switch to the previous file in the
ring press IPREVIOUS FILEI. A file is not written to disk by either of these operations, which
merely perform a switch. The contents of delete, move and pick buffers are preserved
across a switch of files.

Note especially the ability to obey a #include line as a command, and so enable easy
navigation of nested file structures. If #include, (case insensitive) is not allowed by the
compiler or processor for the current language then #include may be inserted into the
document invisibly by making it the heading on an empty fold.

A table of currently open files may be obtained by pressing lUST FILESI. This takes the form
of a sequence of goto commands identifying the files. By pressing IOBEyl on one of these
lines the indicated file will immediately become current.

Press ICOMMANDI to enter the command window. The editor is then in the implicit state
Commanding. A single host command may then be issued, or one of a group of predefined
internal F commands may be issued. To issue a host command whose name matches an
internal F command precede its name by the command name system. To spawn another
instance of the operating system use the appropriate host command (e.g. command in
DOS). The names of F commands are not case sensitive. A command is obeyed by
pressing IOBEyl with the cursor anywhere on the line. The line may be a text line or a fold
or crease line.

Command line commands may be issued from the special purpose command window,
which can act as a command history. Alternatively text lines written into the editing window
can be obeyed as commands.

72 TDS 27700

1.3.15 Language dependencies

After a host command has been executed the user is invited to press any key to continue,
after allowing for screen output to be read.

If the F editor is running on a transputer board attached to the host, care must be taken to
avoid issuing host commands which themselves use the transputer board. Such a command
will reset the transputer and so the editing session may not then be resumed.

When issuing a command which may act on a file currently being edited it is important to
issue a save or saveall to ensure that it acts on an up to date version. The key ISAVEI
may be used to save the current file in its default location.

21

"C" "1*" "*1"

"Occam" "--" ""

"Latex" "%%" ""

"Pascal" "(*" "*)"

"C++" "II" ""

Multiple files in different languages may be edited concurrently. Tne language of each
current file is shown when the key ILiST FILESI is pressed.

Examples:

Whenever a file is saved, its creases are written in the appropriate style.

The key ICOMMENT STYLEI allows the style of crease comments that will be used when
the current file is written to disk to be determined by offering the known languages in
sequence, and finally allowing the user to define a new one. At each stage the process
may be aborted by pressing IFINISHI or the currently offered language accepted by pressing
~. New language styles defined in this way are available for any subsequent presses
of ICOMMENT STYLEI in the current edit, but must be explicitly edited into the startup file if
they are to be used at file input ttme in subsequent editing sessions.

When F starts up, the set of languages defined in the startup file becomes known, and when
each edit starts a search is made for crease lines including 3 curly braces and matching
one of the known language comment conventions. The language is determined by the
contents of the file, and defaults to the language corresponding to the first foldmark line.
The current language is shown in the status message. If it is required to edit a file without
using the fold information the appropriate foldmark line should be removed from the startup
file .

When using languages which allow nested comments, care may need to be taken to avoid
terminating comments within the text of fold comments by accident.

foldmark

foldmark

foldmark

foldmark

foldmark

1.3 Editor functions.J..-.
-=-I

••.-.
-==
••••.,'.
.~~-8

.=7=./

• ~~18

.--=8
i

~28

e=~-.

e=~-8
i

~~

e~-8

.~~~

i.~_~~

e J-8
I

1 F editor overview20

of the file on disk will depend on which version is saved last.

The F editor is suitable for editing text files in a variety of languages, with appropriate
commenting conventions. Text files are represented as ordinary host text files with crease
lines converted into comment lines in one of the (extensible) set of supported languages.
Crease lines are made up from a comment start string, 3 curly braces of the appropriate
kind, arbitrary comment text and a comment terminator string. Each set of comment con
ventions is associated with a language name in the startup file whose name is given in the
f section of the ITERM file.

If the F editor is running on the host itself then arbitrary host commands including compi
lation and program building commands may be called from within the editor. If the host
has sufficient memory this makes it possible for all program development activities to be
performed from within the F editor. It is a matter of user preference whether or not this
mode of working is adopted.

A command is issued by using IOBEYI on any line of text in the command window or in an
editing window. Commands issued from the command window are remembered in that
window for the duration of the current session. After a command is obeyed in the command
window a blank line is inserted above it and that blank line becomes the current line. A
command history thus grows upwards in the command window. These commands may be
remembered for future editing sessions by explicitly editing them into the file whose name
is given in the command line of the startup file. This file is read in by F, when it starts up,
as the initial state of the command window.

In the startup file a line starting with the keyword foldmark should have a sequence of
three strings in double quotes. These are respectively the language name, the comment
start string and the comment terminator string. The comment start and terminator are
restricted to a maximum of three characters each.

72 TDS 277 00 Preliminary version March 1991 .~8

.~~

'."~-~~~,",','"-"_..~
I

72 TDS 27700 Preliminary version March 1991

22 1 F editor overview
r

e::+:W'T
-:r-
.~

-=•.•.-..,_..-=-.

-==
.. .' 8
_1 8

~8
I

• -;-8-?-1

• ~8
/ I

,-c8

e~

e-J~8
1

e-J '8
1

e=J-8
I

ep8.~
I

'SI~
'I

e~.~

.J'~I

2 Editing keys - alphabetical
reference

This chapter presents full definitions of the editing keys in alphabetical order of their names
for reference. The names are related to actual keyboard codes in the ITERM file, and are
shown for the principal keyboard types in the keyboard maps in appendix A.

IBOTTOM OF FOLD I
Places the cursor on the line displaying the bottom crease marker of the current
enclosing fold, or, if already on such a crease, the fold enclosing the current one.

IBROWSE I
Used to set the editor into Browsing state, in which no changes may be made to
the'document. !BROWSE! is also used to end browsing state and return to Editing
state. It switches the set of allowable key functions between the full set and a
reduced set which does not allow any form of data input or any other operations
which could change the content of the current file.

ICALL MACROI
Invokes a sequence of keys defined using the !DEFINE MACROI key. If no macro
sequence has been defined, the key has no effect.

ICLOSE FOLD I
Closes the current enclosing fold. The opened/closed status of any folds inside this
fold is remembered during the current edit. The closed fold line is placed on the
line of the screen where the top crease was, unless the top crease was off the top
of the screen, in which case the closed fold line appears at the top of the screen.
The cursor is positioned on the closed fold line, at the same column position as
it was before ICLOSE FOLDI was pressed. ICLOSE FOLD! has no effect if the current
enclosing fold was opened with an !ENTER FOLDI operation, but a message is given
to remind the user that IEXIT FOLD! should be used to get out of the current fold.

72 TDS 27700 Preliminary version March 1991 .T3'I .

• '3
"I

.~~
-r~

72 TDS 27700 Preliminary version March 1991

ICOMMENT STYLE I

Typical language conventions showing how these are combined are:

See 1.3.14 for further discussion of the command system, including a list of the F
internal commands.

Moves to the command window derived at start up from the command file referenced
from the startup file. By appropriate edits to the startup file the user has the option of
using a single command file identified by an absolute path name from any directory,
or alternatively a local copy. Any command may be edited into this window and
obeyed. The user is thus able to maintain a history of commands in whatever way
is most convenient.

25

Preliminary version March 1991

Copies a line, which may be a closed fold line, so that it may be moved to another
place in the document. It makes a copy of the current line and appends it to the
end of the pick buffer. The cursor is then moved down one line.

As IcoPY PICKI has no effect on the document, it may be used in Browsing state.

Moves the cursor left one column, except in the leftmost column on the screen
where it may cause the view to pan.

Copies the current line and inserts the copy below the current line. If the line is a
closed fold then all the text lines and nested folds in the fold are copied. IcoPY L1NEI

has no effect if the current line is a top or bottom crease. The cursor is placed on
the copy.

The first use of ICREATE FOLDI inserts a fold creation mark above the current line, at
the current column. The second use of ICREATE FOLDI inserts a new crease mark
above the new current line, which may be above or below the fold creation mark. It
then creates a fold containing the lines between these two marks. The fold is closed
and the cursor is placed at the end of the fold line marker, where fold header text
may be inserted.

Between the two presses of ICREATE FOLDI the editor is in Creating state and
all editor functions except up and down cursor movement, scrolling, locating and
searching are disallowed.

The indentation of the new fold is determined by the leftmost non-blank character
in the fold or the leftmost column of the fold creation mark whichever is closest to
the left margin. The lines to be enclosed within the new fold will all be sufficiently
indented to fit into a fold at this indentation.

Moves the cursor down one line. On the bottom line of the screen it scrolls the
screen one line down the current view, if there are lines in the current view below
the screen, and the cursor remains in the same position on the screen.

Editing keys - alphabetical reference 2

72 TDS 27700

ICOpy PICKI

ICREATE FOLD I

ICOpy LINEI

ICURSOR LEFT I

ICURSOR DOWN I

r

~-r.
-r--r-
_+8

)

ar.
!

e=4CJ.I
Ie:::.

.-=
~

&i~·8.·~·
~~---

.,8

• "8..-r--- ... _

.-=8
I

• J~8

-=;e
.~

I

.~~.

.J'!)

e=~=.
I

.-c~'8

• '-j-a
~ .~...~~~

I •

• ~~=8

e:~'B
I -

Preliminary version March 1991

2 Editing keys - alphabetical reference

Language top crease bottom crease
occam --{{{ --}}}
C I*{{{ *1 I*}}} *1
Pascal (* { {{ *) (*}}} *)
~TE'< %%{{{ %%}}}
C++ II{{{ II}}}

The user has the choice of entering one of a set of predefined F internal commands,
see 1.3.14, or a line of text that will be passed as a command to the host operating
system. Press IOBEYI to obey the current line as a command. If obeyed in the
command window, a blank line will be inserted above the command line and this will
be the current line on next entry to the command window. After obeying a command
in the command window, the current file (whose identity may have changed as a
result of the command) will be displayed.

The user is given the optidn to change the style of comments that will be used
to represent crease lines when the current file is next written to disk. The table of
languages defined by foldmark lines in the startup file is displayed in the message
line one line at a time. For each language the user is given the option to change
the style to that language, to abandon the language change, or to move on to the
next language, by pressing IOBEYI, IFINISHI, or any other key respectively.

After offering all known languages F then allows the user to define a new language.
To the question Language: reply with an arbitrary language name terminated by
IRETURNI. To the next two questions reply with the string to be used before the
curly braces, and the possibly empty string which trerminates all comment lines,
respectively.

24

72 TDS 277 00

ICOMMAND I

'CURSOR upl

'DELETE LINE I

IDELETE I

'DEFINE MACRO I

27

Preliminary version March 1991

Deletes the symbol to the left of the cursor. The deletion is governed by the following
rules:

• If the cursor is to the right of the character following (immediately to the
right of) the last significant character on the line, the cursor will move to the
character following the last significant character on the line.

• In all other cases the cursor will move to the first symbol starting position to
the left of the current cursor position, deleting all intervening characters.

• A symbol is a sequence of alphanumeric characters, or of non-space non
alphanumeric characters, A line contains a sequence of symbols, separated
by zero or more spaces. A symbol starting position is the position of the first
character in a symbol.

• If the cursor is on or to the left of the first significant (non-space) character
on the line, the characters from the cursor position to the current indentation
are deleted. The cursor will move to the current indentation.

Deletes all text from the character at the cursor, to the last significant character on
the line, inclusive. The cursor does not move.

Deletes the character at the cursor. All the characters to the right of the cursor are
moved left by one place. The cursor does not move.

Character deletion has no effect when the character to be deleted is part of a marker
symbol, or is to the left of the leftmost column of an open fold.

Spaces may be deleted before a closed fold marker symbol to change the indenta
tion of the fold.

Editing keys - alphabetical reference 2

72 TDS 27700

IDELETE RIGHT I

IDELETE WORD LEFTI

IDELETE TO END OF LINE I

r

e:+:8

-==-~I"

-=-1

-=
e:::8...--.
••••
~.

e--8
..-... ~-~.....
··~~3.'.
.-~8

.=~.

e·'-j-,-:tA
-==-=-~

I

e==8,
I

• =~8
I

·~~I~···.z=i)
I

~~~8
I

e-J-=8
I

.~=8

.~
I

&.-~.'.-
~_.'-~-~.'...

Preliminary version March 1991

2 Editing keys - alphabetical reference

Deletes the character to the lleft of the cursor. The cursor, the character at the
cursor and all subsequent characters on the line are moved left by one place.

Moves the cursor up one line. On the top line of the screen it scrolls the screen one
line up the current view, if there are lines in the current view above the screen, and
the cursor remains in the same position on the screen.

Moves the cursor right one column, except in the rightmost column on the screen
where it may cause the view to pan.

Spaces may be deleted before a closed fold marker symbol to change the indenta
tion of the fold.

Used to define a sequence of keys (which are going to be used together repeatedly)
and assign the sequence to a single keystroke. Two presses of !DEFINE MACROI

are needed to define a key sequence; the required keys (which may not include
IDEFINE MACROI or !CALL MACROI) should be pressed between the two presses of
IDEFINE MACROI. N.B. the keys are obeyed when defining the macro. The sequence
may contain up to 255 keys. Any previously defined macro is forgotten. The defined
macro sequence may be invoked using the !CALL MACROI key.

If the cursor is in the leftmost column of the current enclosing fold, and the total
length of the current line and the line above does not exceed the maximum allowed,
IDELETEI concatenates the current line with the line above.

IDELETEI in the leftmost column has no effect if the current line is a fold line, top
crease or bottom crease, or is a line following a fold line or bottom crease.

Removes the current line from the document, and places it at the end of the delete
buffer. All the lines below the current line in the view are moved up by one line.
IDELETE L1NEI has no effect if the current line is a top crease or bottom crease.
IRESTORE L1NEI may be used to reverse the effect of this key.

26

72 TDS 27700

ICURSOR RIGHTI



IDISPLAY KEY I

IEND OF LINE I

• In all other cases all characters between the cursor and the first symbol
starting position to the right of the current cursor position, will be deleted.

Deletes the symbol to the right of the cursor. The deletion is governed by the
following rules:

29

Preliminary version March 1991

When used on a fold line, clears the screen and displays the contents of the fold
between the top and bottom creases. The display is adjusted to the left so that the
top and bottom marker symbols start in the leftmost column. The cursor is positioned
in the leftmost column of the second line on the screen. This then becomes the
current view and it is not possible to move outside the confines of the fold until a
corresponding IEXIT FOLDI has been done.

Reverses the effect of the most recent 'ENTER FOLDI, closing the fold, but not any
open folds contained within it. The closed fold line is positioned on the same position
as it was when the 'ENTER FOLDI was done.

Displays a map of the system function keys, which is read from the helpfile
identified in the startup file or determined by changing the filename extension of the
ITERM file to •hlp. It also displays a version identity message. Return to the edit
by pressing IFINISHI.

Finishes an edit by saving the file and returns to the next file or to host operating
system level. Also used to leave the HELP display, or the command window or to
escape from a 'COMMENT STYLEI operation.

Applied to a fold whose comment starts Key macro, copies the keystroke se
quence constructed from a sequence of integer values in the fold as the current key
macro. The sequence may then be invoked using the 'CALL MACROI key.

Moves the screen one line down the current view, if there are lines in the current
view below the screen without moving the cursor on the screen. Otherwise moves
cursor down one line.

Moves the screen one line up the current view, if there are lines in the current view
above the screen without moving the cursor on the screen. Otherwise moves cursor
up one line.

Editing keys - alphabetical reference 2

72 TDS 277 00

IFINISHI

IGET MACRO I

IEXIT FOLD]

ILINE DOWN I

IENTER FOLD I

ILINE upi

r

~
• Of •

e-.. '...-.
.TtI

!

-I" tI
~c:8

i.-+8
T

e=:e
".-~~~===-~

e8
e,.

-=-.
.~

• ~c8
I

e=J=8
I

.~~~.

•~8

.~~~
I

e-='8
~-~~::=8

.~~~=e

'.~~8

Preliminary version March 1991

2 Editing keys - alphabetical reference

• If the cursor is on or between the last symbol starting position on the line, and
the last significant character on the line, all characters up to and including
the last significant character on the line will be deleted.

• If the cursor is to the right of the last significant character on the line, the
cursor will not move.

• A symbol is a sequence of alphanumeric characters, or of non-space non
alphanumeric characters, A line contains a sequence of symbols, separated
by zero or more spaces. A symbol starting position is the position of the first
character in a symbol.

• If the cursor is to the left of the indentation of the current fold nothing will
happen.

• If the cursor is to the left of the first significant (non-space) character on the
line, all characters between the cursor the first significant character on the
line will be deleted.

Displays at the cursor position a sequence of decimal integer values separated by
commas corresponding to a sequence of key depressions terminated by a space.
If the cursor is not in, a writable position the display is suppressed. This key is
designed to facilitate the construction of keyboard sections for ITERM files. The
codes are the raw values received by the editor from the keyboard.

Places the cursor immediately to the right of the last significant character on the
current line (Le. the last non-blank character). If the line is too long for the width of
the screen the view will pan if necessary.

28

72 TDS 27700

IDELETE WORD RIGHT I



INEW REPLACE I

INEXT FILEI

ILOCATE LINE I

IMOVE LINEI

31

Preliminary version March 199172 TDS 277 00

IPICK LINEI

Picks up a line, which may be a fold line, so that it may be moved to another pl.ace
in the document. It removes the current line from the document and appends It to
the end of the pick buffer.

Puts down the contents of the pick buffer above the current line. Inserts the se
quence of lines placed in the pick buffer using IPICK LINE! and IcoPY PICKI. The pick
buffer is cleared. If there are no lines in the pick buffer IpUT! has no effect on the
document.

IPREVIOUS FILE I
Switches to the previous file in the ring of files, if there is one. This becomes the
current file. Does not save the old current file to disk. The complete state of the
current file is preserved.

Moves the screen one page up the current view, or to the top of the current view,
whichever is the nearest. The cursor does not move.

Editing keys - alphabetical reference 2

IPAGE DOWN I

Moves the screen one page down the current view, or to the bottom of the current
view, whichever is the nearest. The cursor does not move.

IPAGE upi

IOPEN FOLD I

On a fold line opens the fold and inserts the contents of the fold into the current
view, surrounded by top and bottom creases. The top crease appears on the line
of the screen where the closed fold line was before IOPEN FOLD! was pressed. The
cursor does not move.

IOBEVI

Obeys the current text line as a command. This is primarily for use in the com
mand window, but can also be used in the editing window, where #include
"filename", behaves as f filename, to facilitate navigation into included files.

Care must be taken that the command obeyed does not use resources used by the
editor, such as a transputer board.

-=
e -;.
@~

••
• --1J

-=:8
@::-JI

.-It

•••••••••"'-

@=8

.~......•.'.e=.
••••
.e
88

e-8

.~

.~-=8

.J=

.=3t
&.."..~
T-=d.-=---_~.....~.

Preliminary version March 1991

2 Editing keys - alphabetical reference

Used to move a line, which may be a fold line, to another place in the document.
A buffer is associated with [MOVE'TINEl. If the buffer is empty, !MOVE LINE! removes
the current line from the document and puts it in the buffer. If there is a line in the
buffer, IMOVE LINE! removes the line from the buffer, puts it into the document on the
line above the current line and places the cursor on it.

A question is displayed in the message line asking for a line number. If answered
with IRETURN! or any string not starting with a digit the number of the current line
will be displayed. If answered with an integer the editor locates to the line with that
number in the current file.

The prompt Search for : on the message line requests a new search string;
the reply to this should be a search string terminated by IRETURNI. This becomes
the current search string. A search is performed downwards in the current view for
a string matching the search string. The search starts at the character to the right of
the cursor position. The same search and replace strings are used by the ISEARCHI

and IREPLACE! keys.

Switches to the next file in the ring of files, if there is one. This becomes the current
file. Does not save the old current file to disk. The complete state of the current file
is preserved.

Inserts above the current line a sequence of goto commands identifying the cur
rently opened files. Each line also identifies the language name of the convention
used for its crease comments. These lines are then available for application of the
IOBEY! key to switch editi~g to one of the other files.

The prompt New replace string : on the message line requests a new re
place string; the reply to this is a replace string terminated by IRETURN!. If the cursor
is on a match of the current search string, this string is replaced by the current
replace string. If it is not on a match a message is displayed and no change oc
curs. The new replace string becomes the current replace string used in subsequent
IREPLACE! operations.

30

72 TDS 277 00

ILIST FILES I

INEW SEARCH I



\REPLACE I

\RESTORE liNE I

IRETURNI

IREMOVE FOLD I

33

Preliminary version March 1991

Moves the cursor to the first significant character of the current line (Le. the first
non-blank character). If necessary the view will pan.

Inverts the state of an internal flag which determines whether or not sequences of
multiples of 8 leading spaces are represented in the output file as TAB characters.
The editor state message shows a ! character if tabs are being generated. The
flag will be initially on if and only if any TABs are found when the file is read.

If a non-empty search string has been defined by INEW SEARCHI, a search forward is
made through the lines of the current view, for a string exactly matching the current
search string. The search starts at the character to the right of the cursor position.
When a match is found the cursor moves to the match, which may involve opening
enclosed folds, and the current replace string is shown in the message line, so that
the user may decide whether or not to replace the matched string.

If the character at the cursor is a lower case letter, converts it to upper case. Then
moves the cursor one place to the right.

If the character at the cursor is an upper case letter, converts it to lower case. Then
moves the cursor one place to the right.

The sequence of keys defined using IDEFINE MACROI is saved in a fold inserted above
the current line. The fold comment Key macro is written on this fold and the cursor
is positioned so that a name may be added to identify this particular saved macro
sequence.

The tool keys are used to apply keystroke macros which have been saved in the
startup file. When the editor starts, the startup file is searched for folds whose
headings start with a digit and the text Key macro. The contents of each such
fold is treated as a saved macro and the sequence of keystrokes so defined will be
generated when the corresponding tool key is subsequently pressed.

Editing keys - alphabetical reference 2

72 TDS 277 00

ITO UPPERI

ITO lOWER I

ISTART OF LINE I

ISAVE MACRO I

ISEARCH I

ITOGGLE TABS I

ITOOla I ... ITOOl91

rer-
e:+:-.

I.+.
••••.-8
.-=
• =8

-=-.-- .•-..
--::==--=-:-.

e"8"
@:::8

I

.~~8
I

.~~
I

e:c8
I

.~J~-'

.=~-8

-=228I.-3
I

.=~~
I

•
. "-=--.a
···~~7

• ,-=8

.~.~~

-T:8
ed

Preliminary version March 1991

2 Editing keys - alphabetical reference

Each use of this key will restore the last line placed in the delete buffer by
IDELETE L1NEI, inserting it above the current line in the document. The restored
line is removed from the delete buffer. Other previously deleted lines remain there.

If the cursor is on a match of the current search string, replaces this string by the
current replace string. If it is not on a match a message is displayed and no change
occurs.

On a fold line, opens the fold and removes the top and bottom creases, inserting
the contents of the fold into the current view at an appropriate indentation.

Repaints the entire screen from the stored representation of the current view. If
running in a windowed environment this may have the effect of taking notice of a
change of window size.

The current file is saved to disk.

Splits a text line in two at the cursor position and creates a new line on which are
placed the cursor, the character at the cursor and any subsequent characters on
the line. The new line is then indented by inserting spaces until the cursor is in the
same column as the first significant character of the line above.

IRETURNI may be used within the text of a top crease line.

IRETURNI will insert a blank line above the current line when the cursor is before or
on the first significant character of a line.

IRETURNI will insert a blank line below the current line when the cursor is after the
last significant character of a line.

IRETURNI has no effect within the fold marker on a fold line, top crease, or bottom
crease.

32

IREFRESH I

72 TDS 277 00



IWORD LEFTI

IWORD RIGHT I

• If the cursor is to the right of the last significant character on the line, the

Places the cursor on the line displaying the top crease marker of the current en
closing fold, or, if already on such a crease, the fold enclosing the current one.

35

Preliminary version March 1991

cursor will move to the next multiple of the tabulation increment.

• In all other cases the cursor will move to the first symbol starting positionto
the right of the current cursor position.

72 TDS 277 00

Editing keys • alphabetical reference 2r

e:::8

-=.=-..'.I
~

.o··-~

••
.,=8

&,8
~-=--

I

.','~"'''.,~~

,-,=8

-==8
I... ~.
I

e==8
I

-=-~-.I -

.~.
I -

.~--=8
! -

~=.
/~."'..-.~--'~
~~~

I

.~~j)

I

.~~~

.~.=e

'.=c=8
I

.~~~

Preliminary version March 1991

2 Editing keys • alphabetical reference

• If the cursor is to the right of the character following (immediately to the
right of) the last significant character on the line, the cursor will move to the
character following the last significant character on the line.

• In all other cases the cursor will move to the first symbol starting position to
the left of the current cursor position.

• A symbol is a sequence of alphanumeric characters, or of non-space non
alphanumeric characters, A line contains a sequence of symbols, separated
by zero or more spaces. A symbol starting position is the position of the first
character in a symbol.

• If the cursor is at or to the left of the indentation of the current enclosing
fold, the cursor will move to the extreme left of the line.

• If the cursor is on or to the left of the first significant (non-space) character
on the line, the cursor will move to the current indentation.

• A symbol is a sequence of alphanumeric characters, or of non-space non
alphanumeric characters, A line contains a sequence of symbols, separated
by zero or more spaces. A symbol starting position is the position of the first
character ina symbol.

• If the cursor is to the left of the first significant (non-space) character on the
line, the cursor will move to the first significant character on the line.

• If the cursor is on or between the last symbol starting position on the line,
and the last significant character on the line, the cursor will move to the
character following (immediately to the right of) the last significant character
on the line.

Moves the cursor one symbol right, panning if necessary. The move is governed by
the following rules:

Moves the cursor one symbol left, panning if necessary. The move is governed by
the following rules:

34

72 TDS 277 00

ITOP OF FOLD I

36

72 IDS 277 00

2 Editing keys - alphabetical reference

Preliminary version March 1991

e:::tt

-=-
~
~~_'_",",="L.~,.

.-=

.-=w.-.
-=.=8.=8.=:8
@=8

.~ ..'--..---.
•==.
e=e
.'==8
.,~-,.

~~-~~
"!~.~~~

e~--~-•.~~
.~=e

.~-~=8

.;-8

Appendices

72 IDS 27700 Preliminary version March 1991

A Keyboard allocations

Preliminary version March 1991

List files

F2

Copy-Pick
Co-pyLIne -

Save Macro

Replace
DiSPlay-key -

New Replace------
Locate

F1
Search------
Browse

NewSearch
- Help --

Get Macro------
Put

-PiCkLTne -

Move Une-

F9 F10

..... Del Word Del Word
:--Word- - - Word :..;

DeieteLine RestoreLine
:-- Line - - - Line- :...;
Define Macro Call Macro
Top offold- Bottom Of fOld
-Page Up - Page-Down -

-Line Up- - une Down -

Ctrl

Shift
Alt

Ctrl

Shift
Alt

Ctrl
Shift Com-m-stYle
Alt ------

-Command- - Obey - -

Ctrl
Shift
Alt

Ctrl
Shift
Alt

A.1 IBM PC function keys

72 IDS 27700

~.

~

@-=8
1.·c.

-==
.~~.

a-..',.•
.~

.:=8

~.

.=

.=:8
• •• •
e '.-=8

.e

.=

.~..

.~~~~
I

.-L,=--8

.-=I8

•.··-8

.-~-~8

.~~.

Appendices

Preliminary version March 1991

38

72 IDS 277 00

A Keyboard allocations 41

= Refresh
= Toggle write tabs
= ToolO

= Tool9

Esc Esc
Tab
Alt 0

Alt9

Esc

Enter Fold t Exit Fold

-D-eiete - - -- Rem-ove
I to EOl Fold

-+-- --+- - -- - - -- - - --
~c ~r!vy~e -- -- Next File

1..- Word Word-+

Open Fold ~ Close Fold
- --- - - -- - - --

I Finish Save

Create Fold Delete
--.

Ctr

Es
Ctr

Ctr

Ctrl
Shift
Alt

Delete

F11 F12

Alt

F10F9

o

Define Macro Call Macro
Top aflold- Bottom-otfOid
-~ge-Up - -Page O;wn
- une Up - -U-ne Down

A.2 IBM PC keyboard layout

~.=8

@=-8

e·-_
«=8
~.-..... "-'"

V-~~"

iZ--=it
@~~18

~~-=-~•

.~

~
~~)

I

~
I

«=w

-==
~

-=
.~

~=8

.~-~.

~..~.
~-====~

.~~-8

@,=9

9a765432Alt 1

Tab

* Ctrl + key

Note that additional keys or combinations may be defined
by modifying the ITERM file (see section B).

Esc F1 F2 F3 F4 F5 F6 F7 Fa

B
Ctri Search Replace Get Macro SaveMacrc Ctrl ~ Del Word Del Word
Shift - Br;wse- Disp-key- - - P~t- - - - - - - Shift Com-s"tyie ListRles- ~ -Wo~ - - - - Wo~d- ~

Refresh Alt ~~w=S~~ ~~!eEI= !§k=l~! ~~i~c~ Alt = == = == = = = = E~e~e=u~~ ~~t~r! gn~
Help locate Move Line Copy Line Command Obey ~ Une Line

IBM PC keyboard layoutA.2

40

72 IDS 277 00 Preliminary version March 1991 .~~'--'.

~'=8

6:~"~

72 IDS 27700 Preliminary version March 1991

Search Replace Pick Copy pick Com style
- - - -- - - - -- - - - -- - - - -- - - - --
Help Locate Move Copy Commanc

Preliminary version March 1991

Create Delete
Fold ---.

Close
Fold

43

Preliminary version March 1991

Esc t =To upper
Esc ~ =To lower
Esc 0+- =Previous file
Esc = Next file

~
~

I I

BEJ
I I

Shift D
EnterFold 0

Delet

F10F9F8

o

F7

A.3 NEC PC keyboard layout

Delete Line Restore Line Page Up Page Down

- - -- t-- - - -- t---- - - - --
Start of End of

Line Up Line Down...-
Line Line

--.

72 TDS 27700

e:::.
e:::..--:.

I

e=" •

-=
.-----..~..J:.
••,e:_•.t.
e,.
• _c.
,e-~-.

••.,
~-'.
.-TII

.:~.

.=J:8

.~=8

'.~---.
.-~~-=8

.~~

F6

9

Obey

List files

8

F5

7

F4

A Keyboard allocations

6

F3

5

F2

4

Esc

F1

2 3

* Ctrl + key

Esc Esc = Refresh
Esc F1 = New Search
Esc F2 = New Replace
Esc SP = Display Key
Esc 0 = ToolO

Esc 9 = Tool9

DOShi!!

A.3 NEC PC keyboard layout

42

72 TDS 27700

SUN4 keyboard layout

45

R1 R2 R3
Delete Delete
Word Word
Left Right

R4 R5 R6

Word Word
Left Right

R7 R8 R9

Enter t Exit Line
Fold Fold Up

R10 R11 R12

..- Refresh **Page
Up

R13 R14 R15

Open
~

Close Une
Fold Fold Down

Delete
**PageCreate Fold Right
Down

Return

Delete Left

Delete Right

**Get **Save
Macro Macro

F12
Copy
Pick

F11

Pick

SUN4 keyboard layout

F10

Put

A.4

-=••

~
~."~'~'.
~~~

I

~
~.'
~~~~.,~~

-=
.--~.•.'..,:.

A Keyboard allocations

F8 F9

Search Replace

7 9

F7

Locate

6

F5 F6

ommand Obey

4 5

F4
New

Replace

3

F3
New

Search

F2
Commen

Style

F1

Esc

Tab

Control

Caps

Shift

A.4

44

LH keypad

L1 L2
Help

L3 L4
Move Copy

L5 L6

L7 L8

L9 L10

* = Ctrl + key

** = Esc + key . '..
....._==-~
'~='=~~

•.'-~.' !'~'7

(.~_J'.

.~

* = Ctrl + key

** = Esc + key Esc 0

Esc 9

Tab

Esc R2

Esc R4

Esc R5

Esc R8

Esc R10

Esc R11

Esc R12

Esc R13

Esc R14

Esc R15

Esc SP

=Tool 0

= Tool 9

=Toggle tabs

=Del to EOL

=Start of line

= End of line

=Line up

= Previous file

= List files

= Next file

=Finish

= Line down

=Save

= Display key

72 IDS 27700 Preliminary version March 1991

&a-=-.~-".
~-=--~7

.~~-a

.~~=e

.~~=8

'~~'=8

Note: SUN3 keyboards have a subset of these keys

72 IDS 277 00 Preliminary version March 1991

B.1 The structure of an ITERM file

ITERMs are ASCII text files that describe the control sequences required to drive terminals.
Screen oriented applications that use ITERM files are terminal independent.

The syntax of the lines that make up the body of the standard sections is best described
in an example:

In order to support the F editor a fourth section, the F section is required. The starts with
a line beginning 'F' and ends with the next line beginning 'E'.

Preliminary version March 1991

comments3:34,56,23,7.

B ITERM - terminal
configuration file

This appendix describes the format of ITERM files; it is included for people who need
to write their own ITERM because they wish to change keyboard mappings or are using
terminals that are not supported by the standard ITERM file supplied.

An ITERM file consists of three or more sections. The standard sections are the host,
screen and keyboard sections. They are introduced by a line beginning with the section
letters 'H', 's' or 'K'. Case is unimportant and the rest of the line is ignored. A section is
terminated by a line beginning with the letter 'E'. The host section must appear first; other
sections may appear in any order in the file. Sections must be separated by at least one
blank line. The standard sections consist of a number of lines beginning with a digit.

ITERM files are similar in function to the UNIX termcap database and describe input from,
as well as output to, the terminal. They allow applications that use function keys to be
terminal independent and configurable.

Each line starts with the index number followed by a colon and a list of numbers separated
by commas. Each line is terminated by a full stop (' • ') and anything following it is treated
as a comment. Spaces are not allowed in the data string and an entry cannot be split
across more than one line.

Comment lines, beginning with the character 'I', may be placed anywhere in an ITERM
file. Extra blank lines in the file are ignored.

72 TDS 27700

The index numbers in each section correspond to an agreed meaning for the data. In the
following sections the meaning of the data in each of the three sections is described in
detail.

--==-
-===-
-=-I

-==.-.
-=
@".•. -.•
••••
.~

--=
e-·~~.

e~

eJ_=.
~=e

@,~~.

@-~

@~i_~.

~!t

-~-.A~=~-~7

e~~-=.

~~--.

,~=.

~..-.. ~--.a.--:.
~-~7

A Keyboard allocations

Preliminary version March 199172 TDS 27700

46

8.2.2 Screen size

e.g. 1 :3.

8.3.1 Goto X V processing

B.3 The screen definitions

49

Index Screen operation
10 insert line
11 delete line
12 ring bell
13 home and clear screen
14 terminal initialise
15 terminal finalise

(other codes not used by
F)

Index Screen operation
1 cursor up
2 cursor down
3 cursor left
4 cursor right
5 goto x Y
6 insert character
7 delete character at cursor

8 clear to end of line

9 clear to end of screen

5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14, Y=8 (relative

As a complete example, consider the following ITERM entry in the screen section:

nn is added to the argument before output.

Table B.1 ITERM screen operations

... , -ab, nn, ...

The negative numbers relate to the arguments required for X and Y.

where: a is the argument number (Le. 1 for X, 2 for V).

b controls the data output format.
If b=1 output is an ASCII byte (e.g. 33 is output as !).
If b=2 output is an ASCII number (e.g. 33 is output as 3 3).

8.3 The screen definitions
~

.~

-=
«'..-..c.
«-.
••••
e-.
e-· •
~~
~~~~

@-==8
I

@--:-.

••
6._=.a.
~--===-=-7

e=e

••
8_

c

·•

·S~·e!-.
i:

8 ITERM - terminal configuration file

5:27,-11,32,-21,32

8.2.1 ITERM version

48

B.2 The host definitions

This item allows applications to find out the size of the terminal at startup time. The data
items are the number of columns and rows, in that order, available on the current terminal.

This item identifies an ITERM file by version. It provides some protection against incom
patible future upgrades. The F editor requires version 3 or above.

e.g. 2: 80,25.

Screen locations should be numbered from 0, 0 by the application. Terminals which use
addressing from 1, 1 can be compensated for in the definition of goto X, Y.

The lists of values in the screen section represent control codes that perform certain oper
ations; the data values are ASCII codes to send to the display device.

ITERM version 3 or later defines the indices given in table B.1. These definitions are used
in the example ITERM file; for a complete listing of the file see section B.7. .

The entry for 5, 'goto X y', requires further interpretation by the application.
A typical entry for 'goto X Y' might be:

For example, an entry like: '8: 27, 91, 75 .' indicates that an application should output
the ASCII sequence 'ESC [ K' to the terminal output stream to clear to end of line.

If a terminal initialise code is defined it will be send to the screen at startup time. If a
keyboard needs to be switched to application keypad mode this may be coded here. A
terminal finalisation sequence sent before F closes down may also be defined.

72 TDS 277 00 Preliminary version March 1991 .~.

.=~.
£.:=----_-...2
~~-.--,

72 TDS 277 00 Preliminary version March 1991



foldmark This has three string parameters. The first is a name to be used for a set of

to 0,0) to output the following bytes to the screen:

The items that may appear in a startup file are:

The meanings of the keystrokes are defined in the specification of tools using ITERM.

51

F usage
up
down

Preliminary version March 1991

up
down
left
right
x+1 B goto x y
insert char
delete char
clear to end of line
clear to end of screen

insert line
delete line
beep
clear screen

Code
Nul B
Nul P

[ A
[ B
[ D
[ C
[ y+l
[ @
[ p
[ K
[ J

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

ESC [ L
ESC [ M
CTRL G
ESC [ 2 J

PC Key
Up
Down

8.6 Setting up the ITERM environment variable FTERM

comment conventions. The second is the comment start string. The third is the comment
terminating string. See 1.3.15.

8.7 Example ITERMs

This is an ITERM file for F on the IBM PC using an enhanced ANSI screen driver, which
supports character and line insert and delete.

set FTERM=C:\F\PCFOLD.ITM

8.6 Setting up the ITERM environment variable FTERM

To use an ITERM the application has to find and read the file. The F editor uses an
environment variable called 'FTERM' for this purpose and so this should be set up with the
pathname and filename of the file as its value. For example, under MS-DOS the command
could be:

# --------------------------------------------------
#
# IBM PC (ANSI) ITERM data file for
# Support for f JW 10-01-91
# Special care needed on screen codes 6, 7, 9, 10, 11,
#
# --------------------------------------------------
host
1:3.
2:80,25.
end host
screen
1:27,91,65.
2:27,91,66.
3:27,91,68.
4:27,91,67.
5:27,91,-22,1,59,-12,1,72.
6:27,91,64.
7:27,91,80.
8:27,91,75.
9:27,91,74.

72 TDS 27700

10:27,91,76.
11:27,91,77.
12:7.
13:27,91,50,74.
end of screen stuff
keyboard
6:0,72.
7:0,80.

e L
•

I

~.-..~
I"

~
1'~

~,
i'

~;

~

f!'-L.
I'

@:~
I

@;,=~
I

@;L.
I

e-L8
I

@~L.
1

e- L
•

I

e,':-.
elL.
~.

I

~'
1

8=~.
I

~~!1

~.=+9'

eq=9
~~.

@r',L!J
~"I

£.c=9:
~~-

H51

Preliminary version March 1991

8 ITERM • terminal configuration file

9

91 57 59 49 53 72

ESCBytes in ASCII:

Bytes in decimal: 27

50

8.4 The keyboard definitions

8.5 F editor specific items

helpfile The name of the file containing the text of the help window. This item is only
needed if the keyboard help text is not in a file whose name is derived from that of the
ITERM file by changing its suffix to ". hlp".

helpkey A message leading the user to the on-line Help facility by defining what key to
press to enter the help window.

These items are recognised by the keyword that starts the line. The value of the named
parameter is defined to be the string which follows it.

The layout of typical physical keyboards is shown in appendix A. Sequences of key values
which do not correspond to any of these cooked keystrokes are passed to programs as
individual values.

Each index represents a single 'cooked' keystroke. The data specified after each index
defines the sequence of key values associated with that keystroke. Multiple entries for the
same index indicate alternative keystroke sequences for the operation. The first integer is
the internal 'cooked' keystroke code less 200. Cooked keystroke codes may be observed by
opening a keystroke macro fold which was created by entering keys in Defining macro
state. The sequence of integers between the colon and the dot are ASCII values of actual
codes received by the editor.

startupfile The name of the file containing further F specific items. This name is
superseded by the environment variable FSTART, if this is defined.

72 TDS 27700

command The name of the file containing the initial text of the command window at the
start of an editing session.



8 ITERM - terminal configuration file

The screen section above assumes that the host screen driver accepts the ANSI es
cape sequences shown. The standard Microsoft ANSI.SYS in DOS does not implement
line/character insert/delete sequences, and clear to end of screen from any position. Either
a special screen driver (e.g. BANSI.SYS) must be installed which does implement these
codes or an appropriately modified ISERVER must be used.

This is an ITERM file for SUN4 using SUNOS and SUNVIEW .

# ---------------------------------------------------
#
# SONOS/SUNV:IEW Version of :ITERM for F editor
#
# --------------------------------------------------

53

bottom of fol.d
bottom of fol.d
comment styl.e
1ist fi1es
pick
copy pick
put
togg1e tabs
disp1ay key
previous fi1e
next fi1e
to upper
to 10wer
browse
browse
save
define macro
define macro
ca11 macro
ca11 macro

Preliminary version March 1991

up
down
1eft
right
x+l B goto x y
insert char
de1ete char

NUL]
CTRL B
NUL X
NOLY
NOL j
NOLk
NOLV
TAB
NOLO
ESC NUL K
ESC NUL M
CTRL 0
CTRL L
NOLT
CTRL 0
NOLv
NOLf
CTRL D
NULg
CTRL J

version
screen size

72 TDS 27700

screen section
1:27,91,65. ESC A
2:27,91,66. ESC B
3:27,91,68. ESC D
4:27,91,67. ESC C
5:27,91,-22,1,59,-12,1,72. ESC y+l
6:27,91,64. ESC @
7:27,91,80. ESC P

host section
1:3.
2:80,50.
end of host section

8.7 Example ITERMs

56:0,93. Shift FlO
56:2. ctrl. B
57:0,88. Shift F5
58:0,89. Shift F6
59:0,106. Al.t F3
60:0,107. Al.t F4
61:0,86. Shift F3
62:9. Tab
63:0,85. Shift F2
64:27,0,75. Esc Left
65:27,0,77. Esc Right
66:21. Ctrl. 0
67:12. Ctrl. L
68:0,84. Shift Fl
68:15. Ctr1 0
69:0,118. Ctrl. PgDn
70:0,102. Ctrl. F9
70:4. Ctrl. D
71:0,103. Ctrl. FlO
71:10. Ctrl. J
#73 bad
end of keyboard stuff
f editor specific items
startupfil.e "fol.d. stp"
hel.pkey "Press Fl for Be1p"
end f

I-

~-- "I"

~
I'

~
I

@:L.
1

~~
I

~~L.
I

~,~.

I

~.~

e=-I

8-~:~

@~
I

@'~

@--=,~

e~~==.

~--.

@=-.
@=J)

.~

8=-=8=.
~.-.

@[=-
I&:f-.

l.eft
right
del.ete char l.eft
del.ete char right
del.ete l.ine
del.ete l.ine
restore l.ine
start of l.ine
end of l.ine
move
copy
l.ine up
l.ine down
page up
page down
create fol.d
remove fol.d
remove fol.d
open fol.d
c10se fol.d
enter fol.d
exit fol.d
refresh
search
repl.ace
finish
finish
new search
new repl.ace
hel.p
l.ocate
command
save macro
get macro
obey
tool. 0
tool. 1
tool. 2
tool. 3
tool. 4
tool. 5
tool. 6
tool. 7
tool. 8
tool. 9
word l.eft
word l.eft
word right
word right
del. word l.eft
de1 word right
del. to e01
del. to eol.
top of fol.d
top of f01d

Preliminary version March 1991

Nul. K
Nul. M
BSP
Nul. S
NULn
Ctrl.-Y
NUL 0
NUL A
NULB
NUL =
NUL>
NULC
NULD
NULp
NULq
NULR
NUL <132>
CTRL R
NUL 0
NULQ
NULG
NUL :I
ESC ESC
NUL A

NUL
NULu
CTRL X
NULh
NULi
NUL;
NUL <
NUL ?
NUL a
NUL '
NUL @

NUL <129>
NUL x
NULy
NULz
NUL
NUL
NUL
NUL-
NUL DEL
NUL <128>
NULZ
NULs
NUL [
NULt
NULd
NULe
NULw
CTRL E
NUL \
CTRL T

Left
right
Del.
KPAD
ALT F7
Ctrl.-Y
ALT F8
F7
F8
F3
F4
F9
FlO
ALT F9
ALT FlO
KPAD 0
Ctrl. PgUp
Ctrl. R
End
PgDn
Bome
PgUp
Esc Esc
Ctrl. Fl
Ctrl. F2
Ctrl. End
Ctrl. X
Al.t Fl
Al.t F2
Fl
F2
F5
CTRL F4
Ctrl. F3
F6
Al.tO
Al.tl
1Ut2
Al.t3
Al.t4
Al.t5
Al.t6
Al.t7
Al.t8
Al.t 9
Shift F7
Ctrl. KPAD 4
Shift F8
Ctrl. KPAD 6
Ctrl. F7
Ctrl. F8
Ctrl. Bome
Ctrl. E
Shift F9
Ctrl. T

72 TDS 277 00

8:0,75.
9:0,77.
10:8.
11:0,83.
12:0,110.
12:25.
13:0,111.
14:0,65.
15:0,66.
16:0,61.
17:0,62.
18:0,67.
19:0,68.
20:0,112.
21:0,113.
22:0,82.
23:0,132.
23:18.
24:0,79.
25:0,81.
26:0,71.
27:0,73.
28:27,27.
29:0,94.
30:0,95.
31:0,117.
31:24.
32:0,104.
33:0,105.
34:0,59.
35:0,60.
36:0,63.
37:0,97.
38:0,96.
39:0,64.
40:0,129.
41:0,120.
42:0,121.
43:0,122.
44:0,123.
45:0,124.
46:0,125.
47: 0, 126.
48:0,127.
49:0,J.28.
50:0,90.
50:0,115.
51:0,91.
51:0,116.
52:0,100.
53:0,101.
54:0,119.
54:5.
55:0,92.
55:20.

52



72 TDS 27700

55

tool 3
tool 4
tool 5
tool 6
tool 7
tool 8
tool 9
word left
word right
del word left
del word right
del to eol
del to eol
top of fold
bottom of fold
comment style
list files
pick
copy pick
put
toggle tabs
define key
define key
previous file
next file
to upper
to lower
browse
save
define macro
call macro

Preliminary version March 1991

ESC 3
ESC 4
ESC 5
ESC 6
ESC 7
ESC 8
ESC 9
ESC [211z
ESC [212z
ESC [208z
ESC [209z
ESC ESC [209z
Ctrl-E
Ctrl-T
Ctrl-B
ESC [225z
ESC ESC [215z
ESC [234z
ESC [235z

ESC [233z
TAB
Ctrl-K
ESC SP
ESC ESC D
ESC ESC C
Ctrl-P
Ctrl-N
Ctrl-A
ESC ESC [222z
Ctrl-D
Ctrl-V

72 TDS 277 00

f editor specific items
startupfile "fold. stp"
helpkey "Press L2 for Help"
end f

B.7 Example ITERMs

43:27,51. # ESC 3
44:27,52. # ESC 4
45:27,53. # ESC 5
46:27,54. # ESC 6
47:27,55. # ESC 7
48:27,56. # ESC 8
49:27,57. # ESC 9
50:27,91,50,49,49,122. # R4
51:27,91,50,49,50,122. # R5
52:27,91,50,48,56,122. # Rl
53:27,91,50,48,57,122. # R2
54:27,27,91,50,48,57,122. # ESC R2
54:5. # Ctrl-E
55:20. # Ctrl-T
56:2. # Ctrl-B
57:27,91,50,50,53,122. # F2
58:27,27,91,50,49,56,122. # ESC KPAD 5
59:27,91,50,51,52,122. # Fll
60:27,91,50,51,53,122. # F12
61:27,91,50,51,51,122. # FlO
62: 9. # Tab
63:11. # Ctrl-K
63:27,32. # ESC SP
64:27,27,91,68. # ESC Left
65:27,27,91,67. # ESC Right
66:16. # Ctrl-P
67:14. # Ctrl-N
68:1. # Ctrl-A
69:27,27,91,50,50,50,122. # ESC KPAD 3
70:4. # Ctrl-D
71:22. # Ctrl-V
end of keyboard section for SON4

r-
~-- I~

@:,~"
I'

~
I

@~
I

@~
I

",,'~~=,~-.,.."
1

@:,,:\L.

@'L.
I

@: .'~~.
@ ,~.

@'--'I'-·

@~.

~=L.
I

@=
@==9

@,~-~.

@'-~.

@==!t

@---~~

6itr,",--,''~.A
~~'~-=7

p="-~=.

t---.
.~=.
@=--.

F usage
cursor up
cursor down
cursor left
cursor right

delete char left
delete char right
delete char right

delete line
restore line
start of line
end of line
move
copy
line up

line up
line up
line down

line down
line down
page up
page down
create fold
create fold
remove fold
open fold
close fold
enter fold
exit fold
refresh
search
replace
finish
finish
new search
new replace
help
help
locate line
command
save macro
get macro
obey
tool 0
tool 1
tool 2

Preliminary version March 1991

code
ESC [ A
ESC [ B
ESC [ D
ESC [ C
BSP
DEL
ESC [249z
Ctrl-Y
Ctrl-U
ESC [211z
ESC [212z
ESC [194z
ESC [195z

ESC [200z
ESC [253z
ESC ESC [ A

ESC [201z
ESC [250z
ESC ESC [ B
ESC ESC [253z
ESC ESC [250z
ESC [247z
Ctrl-F
Ctrl-R
ESC [220z
ESC [222z
ESC [214z
ESC [216z
ESC [215z
ESC [231z
ESC [232z
Ctrl-X
ESC ESC [220z
ESC [226z
ESC [227z
ESC [193z
ESC [196z
ESC [230z
ESC [228z
ESC
ESC -
ESC [229z
ESC 0
ESC 1
ESC 2

clear to end of line
clear to end of screen
insert line
delete line
bell
clear screen

B ITERM • terminal configuration file

ESC [ K
ESC [ J
ESC [ L
ESC [ M
CTRL G
ESC [ 2 J

Ctrl-F
Ctrl-R
RPAD 1
KPAD 3
KPAD 7
KPAD 9
KPAD 5
F8
F9
Ctrl-X

# ESC KPAD 1
F3
F4
L2
L5
F7
F5
ESC
ESC -
F6
ESC 0
ESC 1
ESC 2

54

8:27,91,75.
9:27,91,74.
10:27,91,76.
11:27,91,77.
12:7.
13:27,91,50,74.
end of screen section

keyboard section
# SON KEY
6:27,91,65. # Up
7:27,91,66. # Down
8:27,91,68. # Left
9:27,91,67. # Right
10:8. # Del
11:127. # RPAD •
11:27,91,50,52,57,122. # RPAD •
12:25. # Ctrl-Y
13:21. # Ctrl-U
14:27,27,91,50,49,49,122. # Esc R4
15:27,27,91,50,49,50,122. # Esc R5
16:27,91,49,57,52,122. # L3
17:27,91,49,57,53,122. # L4
#18:27,91,50,48,48,122. # L9
18:27,91,50,53,51,122. # Kpad +
18:27,27,91,65. # ESC Up
#19:27,91,50,48,49,122. # Ll0
19:27,91,50,53,48,122. # Enter
19:27,27,91,66. # ESC Down
20:27,27,91,50,53,51,122. # ESC Kpad +
21:27,27,91,50,53,48,122. # ESC Enter
22:27,91,50,52,55,122. #
22:6. #
23:18. #
24:27,91,50,50,48,122. #
25:27,91,50,50,50,122. #
26:27,91,50,49,52,122. #
27:27,91,50,49,54,122. #
28:27,91,50,49,56,122. #
29:27,91,50,51,49,122. #
30:27,91,50,51,50,122. #
31:24. #
31:27,27,91,50,50,48,122.
32:27,91,50,50,54,122. #
33:27,91,50,50,55,122. #
34:27,91,49,57,51,122. #
34:27,91,49,57,54,122. #
35:27,91,50,51,48,122. #
36:27,91,50,50,56,122. #
37:27,61. #
38:27,45. #
39:27,91,50,50,57,122. #
40:27,48. #
41:27,49. #
42:27,50. #



1 This manual

6 FTUTOR.OCC - tutorial file

3 PCFOLD.ITM - ITERM file for PC/AT

5 BANSI.SYS - enhanced ANSI screen driver

Preliminary version March 1991

C Product parts lists and
installation instructions

1 F.EXE - DOS driver calling transputer bootable file

2 F.EXE - DOS executable compiled with Microsoft C

2 READ.ME - text file describing intallation process

3 F.BTL - transputer bootable file

7 ASCII.ITM - basic ITERM file for starting with ASCII keyboard

8 ASCII.HLP - keyboard help file for basic ASCII keyboard

4 FOLD.STP - startup file

5 FOLD.CMD - command history file

4 PCFOLD.HLP - Keyboard help file for PC/AT

6 NECFOLD.ITM - ITERM file for NEC PC

7 NECFOLD.HLP - Keyboard help file for NEC PC

8 NECF.BAT - NEC PC Batch file to call F on transputer board

9 NECF.BAT - NEC PC Batch file to call F on host

All versions:

The F editor exists in versions for various host computers and for a transputer board booted
from a host by ISERVER. This appendix enumerates the documents and files included in
these versions, and gives advice on installation. Where multiple files with the same name
are shown, they will be installed in different directories.

PC version:

72 TDS 277 00

8 ITERM • terminal configuration file ~
II" '

~
~

I

@=+-
fi9I
--=-I

~
I

~
I

~
I

~
I

@~
I

@==-
I

@-L.
I

@_L=-
I

e~
I

e~~

e-~.

e--=~

.~,=-

.~~

@~--.

Preliminary version March 1991 -=1-.
@=I,.

I

I

&--t-

56

72 TDS 277 00



,....
I

1 f - UNIX shell command file to load and run f.btl

SUN versions:

58 C Product parts lists and installation instructions

On the SUN3 it may be necessary to choose new key assignments for those F functions
which are mapped by default onto keys which do not physically exist on the SUN3
keyboard.

Preliminary version March 1991

~ 14,26
IDELETE L1NEI 16, 26
IDELETE RIGHTI 14, 27
IDELETE TO END OF LINE! 14, 27
IDELETE WORD LEFT! 15, 27
IDELETE WORD RIGHTI 15, 28
Deleting characters 14
Deleting lines 16
IDISPLAY KEY! 6, 28
DOS 53

Editing 11
Editor functions 9

fold browsing 13
fold creation and removal 15
multiple files 17

Editor interface 7
line types 8
screen display 8
view of a document 7

Editor states 11
Browsing 13
Commanding 18
Creating 15
Editing 11

lEND OF L1NEI 11, 28
Ending an edit 6
Enhancement suggestions 5
IENTER FOLDI 13, 29
Environment variables 51
exit 19
IEXIT FOLD! 13, 29
exitall 19

f 19
File flattening 3
File hierarchies 17
File inclusion 17
File naming conventions 3
File switching 17
Filed fold 3
IFINISHI 6, 19, 29

72 TDS 277 00

BANSI.SYS 53
Block move of text 16
Bottom crease 2, 8
IBOTTOM OF FOLDI 12, 23
IBROWSEI 13, 23

Alphabetic case 12
ANSI cursor control 5
ANSI screen protocol 51
ANSI.SYS 53
Application keypad mode 48
ASCII keyboard 5, 57

Index

.hlp 6

.itm 6

C 24
C library 19
C++ 24
ICALL MACROI 17, 23
ICLOSE FOLDI 13, 23
ICOMMANDI 18, 24
command 50
Command file 50
Command history 20
Comment lines

as creases 20, 24
ICOMMENT STYLEI 21, 24
Cooked key 50
IcoPY LINE! 16, 25
!COPY PICK! 16, 25
Creases 1, 20, 24
ICREATE FOLD! 15, 25
Current view 7
ICURSOR DOWNI 11, 25
ICURSOR LEFTI 11, 25
Cursor moves 11
Cursor positioning 48
ICURSOR RIGHT! 11, 26
ICURSOR UP! 11, 26

IDEFINE MACROI 17, 26

~,-- !-~

~

~I" ='

~I- ~.

t:~~

~I' ~

~

@:.,L'fI.
I' ~

1:.,.
I

~~.

@",.
I' ""'-

@."lO
I .-

@:",:~O

~>:.

@',-O
I'''''''

@:.

~-~

~'9

IjC~
I

@=1'
@t=+4
@=~

@=-~

b-I

Preliminary version March 1991

10 NECINI25.LIS - Special file for NEC

11 TDS3KEYS.LD - Special file for NEC

12 TDS3KEYS.TBL - Special file for NEC

13 DOSKEYS.LD - Special file for NEC

14 DOSKEYS.TBL - Special file for NEC

It will often be necessary after installation to adapt any path names included in batch
files or in the ITERM or startup files for the desired method of use. If the editor is first
called in the directory in which the ITERM files are installed, all these changes may be
accomplished using the F editor itself.

2 f - UNIX executable file compiled for SUN3 or SUN4

3 sunfold.itm - SUN keyboard version for SUNOS/SUNVIEW

4 sunfold.hlp - Corresponding keyboard help file

Installation instructions for various versions are included in the READ.ME files and in the
delivery manual of accompanying INMOS toolset products.

72 TDS 277 00



60

Flat editor 4
Fold creation mark 8, 15, 25
Fold depth 2
Fold header 1, 15
Fold indentation 14
Fold line 8
Fold mark 50
Fold marker 8
Fold structure 1
Folding 1
foldmark 50
FSATRT 5
FSTART 50
FTERM

environment variable 51
FTERM 5

get 19
IGET MACROI 17, 29
Global replacement 5
goto 19
Goto X Y processing 48

IHELPI 6,29
Help file 50
Help key 50
helpfile 29, 50
helpkey 50
Host command 19

IBM PC 39, 40, 51
iflat 3

include 19
Indentation 14
INMOS software tools 4
insert 18
Inserting characters 14
ISERVER 53
ITERM 4

example 51
F specific items 50

ITERM file 47
version 48

Keyboard definitions 50
Keyboard help 10

72 TDS 277 00

Index

Keyboard layout 6
IBM PC 39,40
NEC PC 42
SUN4 44

Keystroke macro 5, 17, 23, 26

Language 24
Language comments 20
Language dependencies 20
LaTeX 24
ILiNE DOWNI 12, 29
Line numbers 30
Line splitting 14, 32
~ 12, 29
ILiST FILESI 30
ILOCATE L1NEI 17, 30
Long line 13
Lower case 12

Macros 17
Move buffer 16
IMOVE L1NEI 16, 30
Multiple files 17

NEC PC 42,58
Nested files 17
INEW REPLACEI 17, 30
INEW SEARCHI 17, 30
INEXT FILEI 18, 30

IOBEYI 20, 31
occam 1,24
IOPEN FOLDI 13, 31

IPAGE DOWNI 12,31
IPAGE upi 12, 31
Panning 12
Pascal 24
PC 57

IBM 39,40
NEC 42

Philosophy of F 3
Pick buffer 16
IPICK L1NEI 16, 31
IPREVIOUS FILEI 18, 31
IpUTI 16,31

Preliminary version March 1991

r
I ,,'-p.;.'

~

~
~I,',

@:~:tt
I' '

~I'
@!:~.

I',

Index

quit 19
quitall 19

Raw key 6,28
READ.ME 57
IREFRESHI 6, 32
IREMOVE FOLDI 15, 32
IREPLACEI 17, 32
IRESTORE L1NEI 16, 32
IRETURNI 14, 32

ISAVEI 18, 32
save 18
ISAVE MACROI 17, 33
saveall 19
Screen definitions 48
Screen size 48
Scrolling 12
ISEARCHI 17, 33
Search and replace 30, 32, 33
Space compression 11, 33
ISTART OF L1NEI 11, 33
Startup file 50
startupfile 50
States 11
SUN3 58
SUN3 keyboard 58
SUN4 44, 53, 58
SUNOS 58
SUNVIEW 58
system 19

Tab insertion 11
TDS 1,3,8
Terminal configuration 47
Terminal initialisation 48
ITO LOWERI 12, 33

ITO UPPERI 12, 33

ITOGGLE TABSI 11, 33
ITOOLOI 17,33
Top crease 2, 8
ITOP OF FOLDI 12, 34
Transputer board 20, 31
Tutorial 6

72 TDS 277 00

61

Upper case 12

View 7

Window size 32
IWORD LEFTI 12, 34
IWORD RIGHTI 12, 34

Preliminary version March 1991


	Contents
	1 F editor overview
	1.1 The F editor
	1.1.1 Introduction
	1.1.2 Typographical note
	1.1.3 Folding
	1.1.4 The philosophy of F
	1.1.5 Calling the editor from host operating system
	1.1.6 Keyboard layout
	1.1.7 Repainting the screen
	1.1.8 Ending the session
	1.1.9 Tutorial file

	1.2 The editor interface
	1.2.1 Editor's view of a document
	1.2.2 The screen display
	1.2.3 Line types

	1.3 Editor functions
	1.3.1 Overview of editor functions
	1.3.2 Editor states
	1.3.3 Moving the cursor
	1.3.4 Changing case
	1.3.5 Scrolling and panning the screen
	1.3.6 Fold browsing operations
	Opening and closing folds
	Browsing state

	1.3.7 Inserting and deleting characters
	Insertion
	Deletion

	1.3.8 Fold creation and removal
	1.3.9 Deleting lines
	1.3.10 Moving and copying lines
	1.3.11 Search and replace
	1.3.12 Defining and using keystroke macros
	1.3.13 Editing multiple files
	1.3.14 Command line commands
	1.3.15 Language dependencies


	2 Editing keys - alphabetical reference
	BOTTOM OF FOLD
	BROWSE
	CALL MACRO
	CLOSE FOLD
	COMMAND
	COMMENT STYLE
	COPY LINE
	COPY PICK
	CREATE FOLD
	CURSOR DOWN
	CURSOR LEFT
	CURSOR RIGHT
	CURSOR UP
	DEFINE MACRO
	DELETE
	DELETE LINE
	DELETE RIGHT
	DELETE TO END OF LINE
	DELETE WORD LEFT
	DELETE WORD RIGHT
	DISPLAY KEY
	END OF LINE
	ENTER FOLD
	EXIT FOLD
	FINISH
	GET MACRO
	HELP
	LINE DOWN
	LINE UP
	LIST FILES
	LOCATE LINE
	MOVE LINE
	NEW REPLACE
	NEW SEARCH
	NEXT FILE
	OBEY
	OPEN FOLD
	PAGE DOWN
	PAGE UP
	PICK LINE
	PREVIOUS FILE
	PUT
	REFRESH
	REMOVE FOLD
	REPLACE
	RESTORE LINE
	RETURN
	SAVE
	SAVE MACRO
	SEARCH
	START OF LINE
	TO LOWER
	TO UPPER
	TOGGLE TABS
	TOOL0 ... TOOL9
	TOP OF FOLD
	WORD LEFT
	WORD RIGHT

	Appendices
	A Keyboard allocations
	A.1 IBM PC function keys
	A.2 IBM PC keyboard layout
	A.3 NEC PC keyboard layout
	A.4 SUN4 keyboard layout

	B ITERM - terminal configuration file
	B.1 The structure of an ITERM file
	B.2 The host definitions
	B.2.1 ITERM version
	B.2.2 Screen size

	B.3 The screen definitions
	B.3.1 Goto X Y processing

	B.4 The keyboard definitions
	B.5 F editor specific items
	B.6 Setting up the ITERM environment variable FTERM
	B.7 Example ITERMs

	C Product parts lists and installation instructions
	Index

