
ERCIM Workshop on Dependable Software Intensive Embedded systems
In cooperation with EUROMICRO 2005

Porto, Portrugal

18 pages

From message queue to ready queue

Case study of a small, dependable synchronous blocking channels API
“Ship & forget rather than send & forget”

Øyvind Teig
Autronica Fire and Security, Trondheim

 (A UTC Fire and Security company)
http:\\home.no.net\oyvteig

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 2

Abstract

• CSP style synchronous interprocess communication
• on top of a run-time system supporting SDL asynchronous

messaging
• Unidirectional, blocking channels are supplied
• Benefits are

o no runtime system message buffer overflow
o "Access control" architectural design

• A pattern to avoid deadlocks is provided
• The message buffer is obsoleted, and a ready-queue-only

could be asked for.
• May be formally verified with the CSP process algebra.

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 3

1. Introduction

2. SDL and CSP

3. Blocking

4. Access control of other processes

….

All these points will be implicitly covered in the next pages

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 4

5. The layered architecture

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 5

6. The channels C API abstraction

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 6

7. Semantics of asynchronous messages

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 7

8. Semantics of synchronous channels

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 8

9. “From message queue to ready queue”

• Explained with figures above, i.e.:
• Message queue(s) not needed any more
• Ready/scheduling queue(s) all we need
• But we stuck to what we had!
• Of course, timer queue(s) needed

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 9

10. Deadlock avoidance

• Observe that we cannot
deadlock on erroneous
use of semaphores, we
have none

• Only on mutual waiting
for each other in a cycle

• The pattern above
requires Master to treat
Slave-only after "Poll
me!", no other process

• (An asynch channel equals an overwritebuffer composite process
with size 1 communicating over synchronous channels)

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 10

11. Coding examples (1)

• Non-preemptive "return" to scheduler gives one common stack
4. Access control of other processes (more)

• In addition to the "channel switch" mentioned we have:

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 11

• A process needs to obey the protocol semantics, it does not need
to know the semantics of the other processes' internal behaviour

• Only have to look at this process to understand what service it
offers its environment. That service is independent of its
environment - its behaviour is the same anywhere

• This is WYSIWYG semantics
• Processes become dependable software components: no

unpublished interactions (side-effects) between CSP parallel
processes

• It also shows the compositional semantics of CSP
• Erroneous use of semaphores - not WYSIWYG!

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 12

11. Coding examples (2)

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 13

12. Formal basis of the architecture

• The channel layer API discussed here was modelled on macros used
by the code generator of the SPoC occam-to-C compiler

• Based on occam, which is a running subset of CSP

• The CSP process algebra "discovered" by this used through occam

• However, the CSP may be used to model and verify any system

• This would be out of reach (expensive), and not very interesting for us
(small system and use of known software patterns).

• However, other process algebras, like FSP, analysed with the free
LTSA tool, may also be used.

• Modelling asynchronous systems (albeit with finite size buffers, which
makes them synchronous when buffers are empty/full) is also possible
with Promela and the free SPIN tool

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 14

13. Discussion (1)

• "CHAN_CSP" adds about 2 KB of program memory with some
IN, ALT and OUT macros used.

• Execution time overhead and memcpy, discussion
• Processor cycles for ALT, discussion
• SDL runtime system is about 20 KB
• But even with 128 KB of code space (or, soon 256 KB – nice for

an 8 bit machine) and 16(11) MHz clock, the added well-being of
knowing that the system never overflows the message queue or
sends unwanted messages into a processes, outweighs the
overhead.

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 15

13. Discussion (2)

• This author used occam, SPoC and a C CSP library for15 years,
• "Ship & forget" rather than "send and forget"
• Communication states need to be learned
• Complexity and engineers’ preferences and background.
• If OO has had its way, the CSP (or the like) also has a way to go.
• Grasping the communicating state machines is individual.
• A channel most probably seems as belonging to OSI network (3)

or transport (4) layer, and certainly not the application layer (7).
• Some programmers learn this methodology easily.
• However, when the communication infrastructure code once has

been set up, it tends to stay stable and work.

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 16

13. Discussion (3)

• Size of the present "ready queue" is a matter of finding the
maximum scheduling incidence volume.

• When maximum has been found, there is no room for further
surpises, since the value is a function of the number of channels
and processes, not the communication pattern.

• A subset of?) Ada available for microcontrollers of this type
• Java (where CSP libraries are available).
• Or hope that result of ongoing occam research will hit industry

some day.
• In the meantime, we could use solutions as the one discussed

here, which really is quite dependable, even if it is based on hand-
written C.

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 17

14. References (1)

• The edit-by-anyone internet based Wikipedia dictionary has been
used for some essential computer science terms.

• Wikipedia articles often point to more academic sources.

• The last reference (to www.wotug.org) has been added since it is
a good starting point for both theory and practice of this field of
computer science.

• The reference list (of this "industrial" paper - as opposed to
"academic") should be used as hands-on and academic starting
points, not especially for direct referencing of origins.

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
 Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 18

14. References (2)

Added references, not in paper:
• http://rmox.net/prelude - Raw Metal occam - an OS for

embedded applications
• http://www.transpreter.org - occam on anything

