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Abstract

• CSP style synchronous interprocess communication
• on top of a run-time system supporting SDL asynchronous

messaging
• Unidirectional, blocking channels are supplied
• Benefits are

o no runtime system message buffer overflow
o "Access control" architectural design

• A pattern to avoid deadlocks is provided
• The message buffer is obsoleted, and a ready-queue-only

could be asked for.
• May be formally verified with the CSP process algebra.
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1. Introduction

2. SDL and CSP

3. Blocking

4. Access control of other processes

….

All these points will be implicitly covered in the next pages
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5. The layered architecture
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6. The channels C API abstraction
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7. Semantics of asynchronous messages
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8. Semantics of synchronous channels
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9. “From message queue to ready queue”

• Explained with figures above, i.e.:
• Message queue(s) not needed any more
• Ready/scheduling queue(s) all we need
• But we stuck to what we had!
• Of course, timer queue(s) needed
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10. Deadlock avoidance

• Observe that we cannot
deadlock on erroneous
use of semaphores, we
have none

• Only on mutual waiting
for each other in a cycle

• The pattern above
requires Master to treat
Slave-only after "Poll
me!", no other process

• (An asynch channel equals an overwritebuffer composite process
with size 1 communicating over synchronous channels)
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11. Coding examples (1)

• Non-preemptive "return" to scheduler gives one common stack
4. Access control of other processes (more)

• In addition to the "channel switch" mentioned we have:
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• A process needs to obey the protocol semantics, it does not need
to know the semantics of the other processes' internal behaviour

• Only have to look at this process to understand what service it
offers its environment.  That service is independent of its
environment - its behaviour is the same anywhere

• This is WYSIWYG semantics
• Processes become dependable software components: no

unpublished interactions (side-effects) between CSP parallel
processes

• It also shows the compositional semantics of CSP
• Erroneous use of semaphores - not WYSIWYG!
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11. Coding examples (2)
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12. Formal basis of the architecture

• The channel layer API discussed here was modelled on macros used
by the code generator of the SPoC occam-to-C compiler

• Based on occam, which is a running subset of CSP

• The CSP process algebra "discovered" by this used through occam

• However, the CSP may be used to model and verify any system

• This would be out of reach (expensive), and not very interesting for us
(small system and use of known software patterns).

• However, other process algebras, like FSP, analysed with the free
LTSA tool, may also be used.

• Modelling asynchronous systems (albeit with finite size buffers, which
makes them synchronous when buffers are empty/full) is also possible
with Promela and the free SPIN tool
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13. Discussion (1)

• "CHAN_CSP" adds about 2 KB of program memory with some
IN, ALT and OUT macros used.

• Execution time overhead and memcpy, discussion
• Processor cycles for ALT, discussion
• SDL runtime system is about 20 KB
• But even with 128 KB of code space (or, soon 256 KB – nice for

an 8 bit machine) and 16(11) MHz clock, the added well-being of
knowing that the system never overflows the message queue or
sends unwanted messages into a processes, outweighs the
overhead.
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13. Discussion (2)

• This author used occam, SPoC and a C CSP library for15 years,
• "Ship & forget" rather than "send and forget"
• Communication states need to be learned
• Complexity and engineers’ preferences and background.
• If OO has had its way, the CSP (or the like) also has a way to go.
• Grasping the communicating state machines is individual.
• A channel most probably seems as belonging to OSI network (3)

or transport (4) layer, and certainly not the application layer (7).
• Some programmers learn this methodology easily.
• However, when the communication infrastructure code once has

been set up, it tends to stay stable and work.
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13. Discussion (3)

• Size of the present "ready queue" is a matter of finding the
maximum scheduling incidence volume.

• When maximum has been found, there is no room for further
surpises, since the value is a function of the number of channels
and processes, not the communication pattern.

• A subset of?) Ada available for microcontrollers of this type
• Java (where CSP libraries are available).
• Or hope that result of ongoing occam research will hit industry

some day.
• In the meantime, we could use solutions as the one discussed

here, which really is quite dependable, even if it is based on hand-
written C.
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14. References (1)

• The edit-by-anyone internet based Wikipedia dictionary has been
used for some essential computer science terms.

• Wikipedia articles often point to more academic sources.

• The last reference (to www.wotug.org) has been added since it is
a good starting point for both theory and practice of this field of
computer science.

• The reference list (of this "industrial" paper - as opposed to
"academic") should be used as hands-on and academic starting
points, not especially for direct referencing of origins.
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14. References (2)

Added references, not in paper:
• http://rmox.net/prelude - Raw Metal occam - an OS for

embedded applications
• http://www.transpreter.org - occam on anything




