(G0o-style concurrency

Jyvind Teig
@embedded.TRD 26. March 2014

http://www.meetup.com/embedded-TRD/events/169594172/

CSP and process-oriented programming

Even after a long history of channel-based concurrency it is not mainstream

In the light of Google’'s new programn

for shores arour

ming lar

d the Cr

guage Go, this lecture will search
annel Islands

| would appreciate questions and dialogue during the presentation!

G

HUTRONICH-

3¢ United Technologies

Autronica Fire and Security AS (AFS)
Owned by United Technologies Corporation (UTC)
o Part of UTC Building and Industrial Systems
Employs more than 380
e 25 R&D (Trondheim)

e Considering some internationalisation
Headquarter in Trondheim

Mainly fire detection
NOK 825 mill

G

f
3¢ U

Disclaimers

In this lecture | present my own interests and views
(But the themes would be relevant to some reality at Autronica)

This lecture does not reveal any Autronica-sensitive information

D
=
O
4 o=
P
©
=
>
p
)
C
=
8
2
=
2
S

// an embedded programmer (since 1978)

// not a computer scientist
// a blogging «coder" @ htt

http://www.teigfam.net/oyvind/home

// NTH 1976, Autronica 1976-, engine systems, fluid level, fire detection, HW, SW,
// Asm, MPP Pascal, PL/M, Modula 2, occam, (Java, Perl), C, small RTX systems, published, blogging

http://www.teigfam.net/oyvind/home

Goal

* To make you curious about how CSP-based multi-threaded
systems with synchronous blocking communication

can be an alternative to

e single-threaded systems with asynchronous non-blocking calls,
registering of callbacks and non-local event-loop to pick up the
result of an off-line handling

. On the iron!

¢ Q—mmnnr.uM¢<cm o o

Marine‘\'rafﬁc.com
Search - .QW""

DISNEY FANTASY - Vessel's Details and Current Position =
AlAIO T .hup://www.marineuafﬁc.com/aislshipdetails.asp

¢ W

. The Go Programming Language B... | DISNEY FANTASY - Vessel's Detai...

Live Map
| World Map | Cover your Area | FrementlyAskedQuestions | Services ot

Viktig beskj

M R - - e e ”d -
e ‘ N3 kvitter vi 0ss med vart gamie 13g €
DlSNEY FANTASY utl:ev‘sokendesomkzn mgna;:n lagerpro

Duharblitttrukketuﬂoukmvhmenmidqendepmdm;'.

Contribute to this page Add to My Fleet

Vessel's Details

Ship Type: passengers ship

Year Built: 2012

Length x Breadth: 340 m X 42 m

Gross Tonnage: 124000, DeadWeight: 9500 t
Speed recorded (Max / Average): 163 / 13 knots

Pleter Schelte (2013)

++

Flag: Bahamas (BS)
call Sign: C6ZL6
IMO: 9445590, MMSI: 311058700

Last Position Received
Area: Arlantic North
Latitude / Longitude: 28,41305° / -80,6283"_(Map)

AutroKeeper
Currently in Port: CAPE CANAVERAL

. (BNA-180)
L S P crem dovies Safe Return to Port

ey Fantasy (2012)

n

U) @ Current Vessel's Track Ship Photos: 77
gy Upload a photo - D | S
D wind: 22 knots, 99, 22°C : u a afety

I —

AutroKeeper: pat |
per: patented 329859 in Norge, PCT/NO2009/000319 EU (granted as #2353255)

9

Mind map”

This lecture is a Mind Map (like brainstorming?)
of what | have learnt lately (the odd matter)
in the light of my personal experience (biased)

and the background | read about you (rather mixed?)

10

Go-style concurrency, based on

CSP = Communicating Sequential Processes

CSP is a process algebra (Hoare, 1978, 1985)
Influential (3rd most cited paper at some time)

Model with CSPm and formally verify with FDR2 / FDR3

Also PAT (Process Analysis Toolkit) from Singapore

11

#

Single-threading sometimes is more multi-threaded than one might think

12

Multl-threading shown

with an (almost) single-threaded language

node-csp
«Communicating sequential processes for Node.|s»
«(30 style concurrency with channels»
(an experiment)

13

node-csp

e Uses the asynchronous event system of Node.|s
e and «generators» of EcmasScripto (ES6)
o \Written in JavaScript, just to explore any potential

5|0Q:

nttp://www.teigfam.net/oyvind/home/technology/084-csp-on-node-js-and-clojurescript-by-javascript/

http://www.teigfam.net/oyvind/home/technology/084-csp-on-node-js-and-clojurescript-by-javascript/

ﬂOd e—CSp (example interleave.|s)

var csp = require("..");
var chanl = new csp.Chan(); // Create an unbuffered channel.

csp.spawn(function* () {
for (var 1 = 0; i < 10; i++) {
console.log("put”, 1i);
yield chanl.put(i); // Send '1' on channel 'chanl"'.

}
10 yield chanl.put(null);

11 });

OooNOOTULTS, WDN R

13 csp.spawn(function* () {
14 for (;;) {

15 var i = yield chanl.take(); // Take a value of 'chanl'.
16 if (i === null) break; // Quit i1f we get 'null’.
17 console.log("take", 1);
18 }
19 });
By

- Ola Holmstrom & David Nolen

I"]Od e—CSp (example interleave.|s)

var csp = require("..");
var chanl = new csp.Chan(); // Create an unbuffered channel.

csp.spawn(function* () {
for (var i = 0; i < 10; i++) {
console.log("put”, 1i);

yield chanl.put(i);)// Send '1' on channel 'chanl".
}

10 yield chanl.put(null);
11 });

OooNOOTULTS, WDN R

13 csp.spawn(function* () {
14 for (;;) {

15 var i =(yield chanl.take();) // Take a value of 'chanl’.
16 if (i === null) break; // Quit i1f we get 'null'.

17 console.log("take", 1);
18 }
19 });

Src:

L1

https://github.com/olahol/node-csp/blob/master/examples/interleave.|s

https://github.com/olahol/node-csp/blob/master/examples/interleave.js#L1

Concurrency: doing more than one thing

e «Single-threaded»
e Multli-threaded
e Concurrent

e Parallel

17

Concurrency is all over

* \Web pages (in browsers)
* Applications (on Linux, Windows, OS X)
 Embedded systems

* Integrity, VxWorks, Linux, some run-time system and scheduler,
even main+interrupts

 anguages: occam (was), Go (at least not yet), Ada, Erlang, ..”7

* «Synchronous system» with Rate Monotonic Scheduling etc. not in this lecture

18

#2

«A person’s mental model is probably multithreaded,
although this Is rarely conscious»

19

rygve

Reenskaug (in a mail)

Unit of simultaneousness

* "Process model’

By a ready tool (language, pattern) or
built from a kit (library, pattern, stereotype)?

e [raditional objects in OO are only half the way:

e Java: «class MyThread implements runnable» (interface)

20

Unit of locality

e Concurrency + multi-core = parallel
o Shared or distributed memory

* (5o has a shared memory model,
occam has shared/distributed: both use channels

Ada’?
Erlang’”

21

Single-threadeo

 How can you do simultaneous things non-spaghetti’ish”

» Single-threaded + non-blocking =
register callback function and treat it in a (global, local) event loop =

asynchronous

* Single-threaded + many independent jobs =
communicating callbacked functions =
orobably not..

22

Single-threaded?

* [his not as "single-threaded” as you'd like to think
e “Callback hell”(?)

« Even W3C’s DOM has mutexes (DOM = Document Object Model)
lt's a «storage mutex»

23

Process moael

 Many languages add concurrency or parallelism as an afterthought

* First real language was Concurrent Pascal,
1975 (Per Brinch Hansen)

e C11:thread C++11: thread, futures etc.
* Process: not only for concurrent activities
* Also as abstraction of a different type of “object” (="process”)

 Encapsulate state

24

Process-orienteg

ocCam
PAR

P(c)
C(c)

Go

go P(c)

go C(c)

// Some join

29

pyCSP import sys

from pycsp.parallel import *

@process
def source(chan_out):
for 1 1n range(10):
chan_out("Hello world (%d)\n" % (1))
retire(chan_out)

e ;< BrINgs CSP to Python»

while True:
sys.stdout.write(Cchan_in())

chan = Channel()
Parallel(
5 * source(-chan),
5 * sink(+chan)

)

shutdown()

https://code.google.com/p/pycsp/
260

https://code.google.com/p/pycsp/

Communication

Often the concurrent units need to communicate
Shared memory and/or messages

Contracts: protocols, typed (with language support?)
This is not a pipe

e |t's a channel (or a rendezvous/Ada)

"First class” = like sending a channel over a channel

27

Vlessages

 Channels carry typed messages (as said, some even send channels),
zero buffered (synchronous) or butfered (asynchronous).

 \When blocking, synch and comm is the same event

o SDL (Spec & Design Lang) (and UML(?)) do send-and-forget of
messages Into infinite buffers: asynchronous

* | have blogged a lot about the pros and cons, no repeat here

e Both may be used to build communication FSM (Finite State Machine)s

28

try (to say in 1990)

«Processes and synchronous, blocking channels»

29

catch (the late response in 2000)

* "Nnoboday else does It
* “the problem you say it solves isn't ours”

* «Use send-and-forget»

30

(digest) until (2009!)

Google delivers Go

't enforces “occam thinking”

In a wonderfully different, old & new way
‘Go-style concurrency”

Bell Labs had now also been doing it for 30 years

. (NOW ’[hey dared s ay i’[) “Bell Labs and CSP Threads” by Russ Cox
see http://swtch.com/~rsc/thread/

31

http://swtch.com/~rsc/thread/

«Why build concurrency on the ideas of CSP?»

* From Google Go language’s authors:
* Mutexes :-(

» Condition variables :-(

* Memory barriers :-(

* Higher-level interfaces enable much simpler code :-)

http://golang.org/doc/fag#csp

32

http://golang.org/doc/faq#csp

«Why build concurrency on the ideas of CSP7»

» Successful: CSP :-)
 Occam and Erlang :-)
 (GO’s channels as first class objects :-)

e Fits well into a procedural language framework :-)

33

Nothing really «blocks»

Processor cycles seldom used to spin around waiting for a single resource
SO “blocking” entails being able to do something else in the meantime
Like sleep, or callback, directly or hidden in a language mechanism

This Is the basic problem

f there iIs no good mechanism to handle this, then “blocking is evil”
'S a valid fear of spaghetti concurrency!

 And at some (but not all!) levels timeout must catch it!

Then even the | program single-threaded” statement is a valid response

34

‘Blocking Is evil”

Asynchronous and non-blocking
Synchronous and blocking
Neither is «evil» if both mechanisms are easily available

But in a safety-critical system buffered must have control of max buffer need!

35

Buffer where”?

Buffer in a pipe-type untyped buffer, «max 1500 bytes"?
Or in a typed buffered channel?, «message»

Or inside a process?, «flush, prioritise»

* \Why buffer in the tube and not in a tank”

Worse: a tube is not an expansion tank! (overflow?)

30

Rich Interface component modelling

A component also has dynamic properties
not only a standard API

Can be modelled in several languages
CSP, UML..

To make verified connectable sw components:
Less testing(?)

| have tried to understand this:
http://www.teigfam.net/oyvind/home/technology/081-rich-interface-component-modeling/

| am looking forwards to hearing BitReactive (here now?) talk about their solution!

37

http://www.teigfam.net/oyvind/home/technology/081-rich-interface-component-modeling/

Autronica (C.V.)

e Autronica shipped several products programmed in occam In the nineties

* Diesel engine data acquisition and computation unit (NK-200).
With transputers

o Radar-based fluid level gauging (GL-100, now Kongsberg product).
With signal processor and occam to C-with-scheduler translator

* Transputers and occam were “CSP engines’

33

¢ Some CSP-based run-time schedulers used in ARM, Atmel ATmega, XMEGA

e One built on top of an asynchronous SDL-based kernel
(channel ready then run process converted run-«messages»)

e A «naked», with synchronisation points generated by a tool in ANSI C
(much like the yield we started with) (Channel ready is synchronisation only)

 Published papers and discussion of the pros and cons of each of these

e (But we mostly seem to use the SDL-based systems for fire loop units)

39

http://www.teigfam.net/oyvind/pub/pub.html

XCHAN

Higher order channel and pattern

Trying to merge synchronous and asynchronous traditions

«Safe» send-and-forget

Communicating Process Architectures 2012

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2012

© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

XCHANS: Notes on a New Channel Type

@yvind TEIG '
Autronica Fire and Security AS 2, Trondheim, Norway
(3 typos fixed, 31.Aug.2012)

Abstract. This paper proposes a new channel type, XCHAN, for communicating
messages between a sender and receiver. Sending on an XCHAN 1s asynchronous,
with the sending process informed as to its success. XCHANs may be buffered, in
which case a successful send means the message has got into the buffer. A
successful send to an unbuffered XCHAN means the receiving process has the
message. In either case, a failed send means the message has been discarded. If
sending on an XCHAN fails, a built-in feedback channel (the x-channel, which has
conventional channel semantics) will signal to the sender when the channel 1s ready
for input (i.c., the next send will succeed). This x-channel may be used in a select
or ALT by the sender side (only input guards are needed), so that the sender may
passively wait for this notification whilst servicing other events. When the x-channel
signal is taken, the sender should send as soon as possible — but it 1s free to send

something other than the message originally attempted (e.g. some freshly arrived
data). The paper compares the use of XCHAN with the use of output guards in

select/ALT statements. XCHAN usage should follow a design pattern, which 1s
also described. Since the XCHAN never blocks, its use contributes towards deadlock-
avoildance. The XCHAN offers one solution to the problem of overflow handling
associated with a fast producer and slow consumer in message passing systems. The
claim 1s that availability of XCHANs for channel based systems gives the designer

and programmer another means to simplify and increase quality.

Keywords. Channels, synchronous, asynchronous, buffers, overflow, flow control,
CSP.

Introduction

155

Communicating Process Architectures 2013 1
P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2013

© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

~eathering

An implicit subscriber pattern built on XCHAN Selective Choice ‘Feathering’ with XCHANSs

@yvind TEIG'
Autronica Fire and Security AS°, Trondheim, Norway

--

x-channel_bus_0

Abstract. This paper suggests an additional semantics to XCHANs, where a sender

__,/ A P BUS STOP to a synchronous channel that ends up as a component in a receiver’s selective
P_BUS_0O g choice (like ALT) may (if wanted) become signaled whenever the ALT has been (or
chan_bus_0 xchan_bus_0 Interested , , , , , ,
> ; > 1s being) set up with the actual channel not in the active channel set. Information
- / about this 1s either received as the standard return on XCHAN’s attempted sending or
" xchannel_bus_1 on the built-in feedback channel (called x-channel) if initial sending failed. This
guard conditions semantics may be used to avoid having to send (and receive) messages that have
__,/ A . ALT been seen as uninteresting. We call this scheme feathering, a kind of low level
chan._bus. 1 P_BUS_1 xchan__bus. 1 ENot interested _'1_:_' implicit subscriber mechanism. The mechanism may be useful for systems where
>\ D A A 1 P channels that were not listened to while listening on some other set of channels, will
__ R not cause a later including of those channels to carry already declared uninteresting
1 x-channel_bus_2 ‘ messages. It 1s like not having to treat earlier bus-stop arrival messages for the
: wrong direction after you sit on the first arrived bus for the correct direction. The
| _,/ A paper discusses the 1dea as far as possible, since modeling or implementation has not
chan_bus_ P_BUS_2 xchan. bus._ 2 Interested been possible. This paper’s main purpose is to present the idea.
> >
- / _ Keywords. channels, synchronous, asynchronous, buffers, overflow, flow control,

CSP, modeling, semantics, feathering

Introduction

The 1dea of the suggested semantics appeared after reading Tony Hoare’s lecture “Con-

~11rvrent nroorame watt facter?? fram 20022 11T A ffer come nonderino of a cifiiatinn decerithed

«CSP: arriving at the CHANnNel island»

My CPA-2000 paper

www.teigfam.net/oyvind/pub/pub_details.htmI#CSP:arriving_at_the CHANnNel_island

This was 9 years before Go

But 10 years of working with occam
What influence will Go have?

o Students at NTNU now «love Go»!

A small step..or?

42

http://www.teigfam.net/oyvind/pub/pub_details.html#CSP:arriving_at_the_CHANnel_island

Hapberdashery

 Channels have no busy-poll: channel (msg, tim, int) drives scheduling
e -> |Low power?

* Present CSP processor: www.Xmos.com

o «xXCore MULTICORE», xC with channels, guaranteed to meet timing
requirements

43

http://www.xmos.com

DISNEY DREAM: Ship Photos o
! ey G JLOC W marinetrafficcom ()
4y ntto fww= marinetraffic.com s/ showaliphotos S8

ummary .

0 W ke Adeassebol Bodegd
DUSNEY DREAM: SHP FREESE ﬁ MarineTrafﬁc.com \
. f—.l;wu:’:v‘ (,.;lﬁwrmrﬂywww | Services | = QBT

| | DISNEY DREAM
photos:

- daap

upieed 2 bt

Ship Tyoe: Passerie
Leagih x & -7 . w2/ 28
speed recorded J &

DISNEY FANTASY - Vessel's Details and Current Position =

41’ & eS| A AllLOJ .t 'hup:/Iwww.marine(ram:.com/ais/shupde(ails‘as

The Go Programming Language B... ‘\ DISNEY FANTASY - Vessel's Detai.... \/

Live Map

Place: omihaven (5557 - | World Nap | Cover your Area | Frequently Asked Questions | Services 2
Date Takee: 2010-11:1) 6749
| et s Viktig beskjed ;
N kvitter vi oss med van gamie lag
D|SNEY FANTASY ut besokende som kan motta ga

% T :
* United Technologies Du har blitt trukket ut! Du kan vinne enay

Contribute to this page Add to My Fleet

Vessel's Details

Ship Type: Passengers ship

Year Built: 2012

Length x Breadth: 340m X 42 m

® .
There are other stories from Autronica! =

IMO: 9445590, MMSI: 311058700

Last Position Received

Area: Atlantic North

Latitude / Longitude: 28,41305" / -80,6283" (Map)
Currently in Port: CAPE CANAVERAL

Last Known Port: CAPE CANAVERAL

CAPE CANAVERAS
Kees de Vries

Info Received: 0d Oh 2min ago MarineTraffic.com
Ship Photos: 77
UE(O&O a photo

j Wind: 22 knots, 997, 2'c .

o T i
0 learn more Go, register on: golang-nuts

@ Current Vessel's Track

Current Vessels IS2

* [his lecture wi
Il be on my hom
http://wvvvv.teigfam.net/oyvind/hgme/ € page / blog:

44

http://www.teigfam.net/oyvind/home/

AUTRONICH-
e [here are

YSNEY DREAM: S

retraffic com) 85 whowal 13

summary

» O ALA \of & iy nttp | fwwes mant
o WM W Adeassebob Bodegs
[HSNEY DREAM: SHp Phetor
Live Nap —
World Wap Cawer your Ared ‘W’nvlmwm Sorvics \

Qo www marinetraffic <om

c.com
A English ¥

MarineTrafﬁ
.2 Q

DISNEY DREAM
photos:

daoaPp

Upiond 3 SP<L0

hip Type: Pesserae

Leagth x Breagth alm X 3 S

speed recsrded hax 1 Average’ 194
Call Sigre CATRS

wrots
Flag: Saranas [B5
ass: 311042900 WO PATHA

= S

Place: Eemshaven Latitude

Ve
Date Takee: 2018-11 1) 0749
Original Stzec 1900 x 1175 prels

Vessel's Details
Ship Type: Passengers ship
Year Built: 2012
Length x Breadth:
Gross To
Speed recorded (Max / Ave

OmX42m

Flag: Bahamas (B8S)
Call Sign: C6ZL6
IMO: 9445590, MMSL: 311058700

Last Position Received
Area: Atlant
Latitude / Longitude: 28.41
Currently in Port: CAPE CANA

Last Known Port: CAPE CANAVERAL
Info Recetved: 0d Oh Zmin ago

@ Current Vessel's Track

— Wind: 22 knots, 99", u'c
)|

e JoO |
learn more Go, register on: golang-nuts

e [his lecture wil
http://www.teigfam.

be on my home page / blog:

net/oyvind/home/

Thank you!

45

“1"World Map gi: prr.W‘Area

DISNEY FANTASY

age Add to My Fleet

nnage: 124000, DeadWeight: 9500 t
rage): 16.3 / 15 knots

05° / -80,6283° (Map)

ErequenttyAsked Questions

_Iik\lig beskjed

http://www.teigfam.net/oyvind/home/

