
Go-style concurrency
Øyvind Teig 

@embedded.TRD 26. March 2014

!1 25March2014: 19:51

http://www.meetup.com/embedded-TRD/events/169594172/

Even after a long history of channel-based concurrency it is not mainstream
!

In the light of Google’s new programming language Go, this lecture will search
for shores around the Channel Islands

CSP and process-oriented programming

!2

Even after a long history of channel-based concurrency it is not mainstream
!

In the light of Google’s new programming language Go, this lecture will search
for shores around the Channel Islands

CSP and process-oriented programming

!3

I would appreciate questions and dialogue during the presentation!

• Autronica Fire and Security AS (AFS)
• Owned by United Technologies Corporation (UTC)

• Part of UTC Building and Industrial Systems
• Employs more than 380

• 25 R&D (Trondheim)
• Considering some internationalisation

• Headquarter in Trondheim
• Mainly fire detection
• NOK 825 mill

!4

Disclaimers

In this lecture I present my own interests and views
(But the themes would be relevant to some reality at Autronica)

!

This lecture does not reveal any Autronica-sensitive information

{ }

!5

{!
// an embedded programmer (since 1978)!
// not a computer scientist!
// a blogging «coder" @ http://www.teigfam.net/oyvind/home/!

}

I am..

!6

http://www.teigfam.net/oyvind/home

{!
// an embedded a (since 1978)!
// not a computer scientist!
// a blogging «coder" @ http://www.teigfam.net/oyvind/home/!

}

I am..

// NTH 1976, Autronica 1976-, engine systems, fluid level, fire detection, HW, SW,!
// Asm, MPP Pascal, PL/M, Modula 2, occam, (Java, Perl), C, small RTX systems, published, blogging

http://www.teigfam.net/oyvind/home

Goal

• To make you curious about how CSP-based multi-threaded
systems with synchronous blocking communication

can be an alternative to

• single-threaded systems with asynchronous non-blocking calls,
registering of callbacks and non-local event-loop to pick up the
result of an off-line handling

!8

!9

}

Pieter Schelte (2013)

Disney Dream (2011)

D
is

ne
y

Fa
nt

as
y

(2
01

2)

++

AutroKeeper
(BNA-180)

Safe Return to Port!
Dual Safety 

On the iron!

AutroKeeper: patented 329859 in Norge, PCT/NO2009/000319 EU (granted as #2353255)

Mind map?

• This lecture is a Mind Map (like brainstorming?)

• of what I have learnt lately (the odd matter)

• in the light of my personal experience (biased)

• and the background I read about you (rather mixed?)

!10

Go-style concurrency, based on

• CSP = Communicating Sequential Processes

• CSP is a process algebra (Hoare, 1978, 1985)

• Influential (3rd most cited paper at some time)

• Model with CSPm and formally verify with FDR2 / FDR3

• Also PAT (Process Analysis Toolkit) from Singapore

!11

#1

Single-threading sometimes is more multi-threaded than one might think

!12

with an (almost) single-threaded language
!

node-csp
«Communicating sequential processes for Node.js»  

«Go style concurrency with channels»
(an experiment)

!13

Multi-threading shown

http://www.teigfam.net/oyvind/home/technology/084-csp-on-node-js-and-clojurescript-by-javascript/

• Uses the asynchronous event system of Node.js
• and «generators» of EcmaScript6 (ES6)
• Written in JavaScript, just to explore any potential

node-csp

Blog:

http://www.teigfam.net/oyvind/home/technology/084-csp-on-node-js-and-clojurescript-by-javascript/

Ola Holmström & David Nolen

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19

var	
 csp	
 =	
 require("..");	

!
var	
 chan1	
 =	
 new	
 csp.Chan();	
 //	
 Create	
 an	
 unbuffered	
 channel.	

!
csp.spawn(function*	
 ()	
 {	

	
 	
 for	
 (var	
 i	
 =	
 0;	
 i	
 <	
 10;	
 i++)	
 {	

	
 	
 	
 	
 console.log("put",	
 i);	

	
 	
 	
 	
 yield	
 chan1.put(i);	
 //	
 Send	
 'i'	
 on	
 channel	
 'chan1'.	

	
 	
 }	

	
 	
 yield	
 chan1.put(null);	

});	

!
csp.spawn(function*	
 ()	
 {	

	
 	
 for	
 (;;)	
 {	

	
 	
 	
 	
 var	
 i	
 =	
 yield	
 chan1.take();	
 //	
 Take	
 a	
 value	
 of	
 'chan1'.	

	
 	
 	
 	
 if	
 (i	
 ===	
 null)	
 break;	
 //	
 Quit	
 if	
 we	
 get	
 'null'.	

	
 	
 	
 	
 console.log("take",	
 i);	

	
 	
 }	

});

(example interleave.js)

By:
!15

node-csp

https://github.com/olahol/node-csp/blob/master/examples/interleave.js#L1

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19

var	
 csp	
 =	
 require("..");	

!
var	
 chan1	
 =	
 new	
 csp.Chan();	
 //	
 Create	
 an	
 unbuffered	
 channel.	

!
csp.spawn(function*	
 ()	
 {	

	
 	
 for	
 (var	
 i	
 =	
 0;	
 i	
 <	
 10;	
 i++)	
 {	

	
 	
 	
 	
 console.log("put",	
 i);	

	
 	
 	
 	
 yield	
 chan1.put(i);	
 //	
 Send	
 'i'	
 on	
 channel	
 'chan1'.	

	
 	
 }	

	
 	
 yield	
 chan1.put(null);	

});	

!
csp.spawn(function*	
 ()	
 {	

	
 	
 for	
 (;;)	
 {	

	
 	
 	
 	
 var	
 i	
 =	
 yield	
 chan1.take();	
 //	
 Take	
 a	
 value	
 of	
 'chan1'.	

	
 	
 	
 	
 if	
 (i	
 ===	
 null)	
 break;	
 //	
 Quit	
 if	
 we	
 get	
 'null'.	

	
 	
 	
 	
 console.log("take",	
 i);	

	
 	
 }	

});

Src:

(example interleave.js)node-csp

https://github.com/olahol/node-csp/blob/master/examples/interleave.js#L1

Concurrency: doing more than one thing

• «Single-threaded»

• Multi-threaded

• Concurrent

• Parallel

!17

Concurrency is all over
• Web pages (in browsers)

• Applications (on Linux, Windows, OS X)

• Embedded systems

• Integrity, VxWorks, Linux, some run-time system and scheduler,  
even main+interrupts

• Languages: occam (was), Go (at least not yet), Ada, Erlang, ..?

• «Synchronous system» with Rate Monotonic Scheduling etc. not in this lecture

!18

#2

«A person’s mental model is probably multithreaded,  
although this is rarely conscious»

!19

Trygve Reenskaug (in a mail)

Unit of simultaneousness

• “Process model”

• By a ready tool (language, pattern) or  
built from a kit (library, pattern, stereotype)?

• Traditional objects in OO are only half the way:

• Java: «class MyThread implements runnable» (interface)

!20

Unit of locality

• Concurrency + multi-core = parallel

• Shared or distributed memory

• Go has a shared memory model,  
occam has shared/distributed; both use channels  
Ada? 
Erlang?

!21

Single-threaded

• How can you do simultaneous things non-spaghetti’ish?

• Single-threaded + non-blocking =  
register callback function and treat it in a (global, local) event loop =  
asynchronous

• Single-threaded + many independent jobs =  
communicating callbacked functions =  
probably not..

!22

Single-threaded?

• This not as “single-threaded” as you’d like to think

• “Callback hell”(?)

• Even W3C’s DOM has mutexes (DOM = Document Object Model) 
It’s a «storage mutex»

!23

Process model
• Many languages add concurrency or parallelism as an afterthought

• First real language was Concurrent Pascal,  
1975 (Per Brinch Hansen)

• C11: thread C++11: thread, futures etc.

• Process: not only for concurrent activities

• Also as abstraction of a different type of “object” (=”process”)

• Encapsulate state

!24

Process-oriented

occam
PAR  
 P(c)  
 C(c)"

Go!
go P(c)  
go C(c)  
// Some join

!25

pyCSP import sys	
from pycsp.parallel import *	
!
@process	
def source(chan_out):	
 for i in range(10):	
 chan_out("Hello world (%d)\n" % (i))	
 retire(chan_out)	
 	
@process	
def sink(chan_in):	
 while True:	
 sys.stdout.write(chan_in())	
!
chan = Channel()	
Parallel(
 5 * source(-chan),	
 5 * sink(+chan)	
)	
!
shutdown()

«Brings CSP to Python»

https://code.google.com/p/pycsp/
!26

https://code.google.com/p/pycsp/

Communication
• Often the concurrent units need to communicate

• Shared memory and/or messages

• Contracts: protocols, typed (with language support?)

• This is not a pipe

• It’s a channel (or a rendezvous/Ada)

• “First class” = like sending a channel over a channel

!27

Messages
• Channels carry typed messages (as said, some even send channels),

zero buffered (synchronous) or buffered (asynchronous).

• When blocking, synch and comm is the same event

• SDL (Spec & Design Lang) (and UML(?)) do send-and-forget of
messages into infinite buffers: asynchronous

• I have blogged a lot about the pros and cons, no repeat here

• Both may be used to build communication FSM (Finite State Machine)s

!28

try (to say in 1990)

«Processes and synchronous, blocking channels»

!29

catch (the late response in 2000)

• “nobody else does it”

• “the problem you say it solves isn’t ours”

• «use send-and-forget»

!30

(digest) until (2009!)
• Google delivers Go

• It enforces “occam thinking”

• in a wonderfully different, old & new way

• “Go-style concurrency”

• Bell Labs had now also been doing it for 30 years

• (Now they dared say it)

!31

“Bell Labs and CSP Threads” by Russ Cox 
see http://swtch.com/~rsc/thread/

http://swtch.com/~rsc/thread/

«Why build concurrency on the ideas of CSP?»

• From Google Go language’s authors:

• Mutexes :-(

• Condition variables :-(

• Memory barriers :-(

• Higher-level interfaces enable much simpler code :-)

!32

http://golang.org/doc/faq#csp

http://golang.org/doc/faq#csp

«Why build concurrency on the ideas of CSP?»

• Successful: CSP :-)

• Occam and Erlang :-)

• Go’s channels as first class objects :-)

• Fits well into a procedural language framework :-)

!33

Nothing really «blocks»
• Processor cycles seldom used to spin around waiting for a single resource

• So “blocking” entails being able to do something else in the meantime

• Like sleep, or callback, directly or hidden in a language mechanism

• This is the basic problem

• If there is no good mechanism to handle this, then “blocking is evil”  
is a valid fear of spaghetti concurrency!

• And at some (but not all!) levels timeout must catch it!

• Then even the “I program single-threaded” statement is a valid response
!34

“Blocking is evil”

• Asynchronous and non-blocking

• Synchronous and blocking

• Neither is «evil» if both mechanisms are easily available

• But in a safety-critical system buffered must have control of max buffer need!

!35

Buffer where?

• Buffer in a pipe-type untyped buffer, «max 1500 bytes"?

• Or in a typed buffered channel?, «message»

• Or inside a process?, «flush, prioritise»

• Why buffer in the tube and not in a tank?

• Worse: a tube is not an expansion tank! (overflow?)

!36

Rich interface component modelling
• A component also has dynamic properties 

not only a standard API

• Can be modelled in several languages 
CSP, UML..

• To make verified connectable sw components: 
Less testing(?)

• I have tried to understand this: 
http://www.teigfam.net/oyvind/home/technology/081-rich-interface-component-modeling/

• I am looking forwards to hearing BitReactive (here now?) talk about their solution!
!37

http://www.teigfam.net/oyvind/home/technology/081-rich-interface-component-modeling/

Autronica (C.V.)
• Autronica shipped several products programmed in occam in the nineties

• …

• Diesel engine data acquisition and computation unit (NK-200).  
With transputers

• Radar-based fluid level gauging (GL-100, now Kongsberg product).  
With signal processor and occam to C-with-scheduler translator

• Transputers and occam were “CSP engines”

!38

Autronica (C.V.)

!39

• Some CSP-based run-time schedulers used in ARM, Atmel ATmega, XMEGA

• One built on top of an asynchronous SDL-based kernel  
(channel ready then run process converted run-«messages»)

• A «naked», with synchronisation points generated by a tool in ANSI C
(much like the yield we started with) (Channel ready is synchronisation only)

• Published papers and discussion of the pros and cons of each of these

• (But we mostly seem to use the SDL-based systems for fire loop units)

http://www.teigfam.net/oyvind/pub/pub.html

Communicating Process Architectures 2012 155

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2012

© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

XCHANs: Notes on a New Channel Type

Øyvind TEIG

1
Autronica Fire and Security AS

2
, Trondheim, Norway

(3 typos fixed, 31.Aug.2012)

Abstract. This paper proposes a new channel type, XCHAN, for communicating

messages between a sender and receiver. Sending on an XCHAN is asynchronous,

with the sending process informed as to its success. XCHANs may be buffered, in

which case a successful send means the message has got into the buffer. A

successful send to an unbuffered XCHAN means the receiving process has the

message. In either case, a failed send means the message has been discarded. If

sending on an XCHAN fails, a built-in feedback channel (the x-channel, which has

conventional channel semantics) will signal to the sender when the channel is ready

for input (i.e., the next send will succeed). This x-channel may be used in a select

or ALT by the sender side (only input guards are needed), so that the sender may

passively wait for this notification whilst servicing other events. When the x-channel

signal is taken, the sender should send as soon as possible – but it is free to send

something other than the message originally attempted (e.g. some freshly arrived

data). The paper compares the use of XCHAN with the use of output guards in

select/ALT statements. XCHAN usage should follow a design pattern, which is

also described. Since the XCHAN never blocks, its use contributes towards deadlock-

avoidance. The XCHAN offers one solution to the problem of overflow handling

associated with a fast producer and slow consumer in message passing systems. The

claim is that availability of XCHANs for channel based systems gives the designer

and programmer another means to simplify and increase quality.

Keywords. Channels, synchronous, asynchronous, buffers, overflow, flow control,

CSP.

Introduction

With the advent of the Go programming language [1], channel communication based on the

CSP paradigm [2] again seems to have a potential to becoming mainstream. A previous

attempt was with the occam programming language [3-5], which gained significant

industrial traction during the 1980s and early 1990s (and, of course, is still being developed

and applied in academic research [6-8]). Whether new languages with concurrency based

on CSP repeat this success remains to be seen.

Nevertheless, channels come in more flavours than the simple channels of occam. This

paper suggests a new type of channel that could be added to CSP libraries or become a new

primitive in future versions of CSP-based languages. We call this channel an XCHAN, which

contains a communication channel and a built-in channel-ready-channel (the x-channel)

for flow control. An XCHAN may be sent to (asynchronously) and received from, but the

sender must listen on the x-channel (usually in an ALT/select) when sending fails. An

XCHAN may be buffered.

1
 The author works with concurrent software for fire detection systems, but this "industrial paper" does not

necessarily reflect views taken by the company. See http://www.teigfam.net/oyvind/work/work.html.
2
 A UTC Fire & Security company, see http://www.autronicafire.com.

XCHAN

x-channel

CHAN

Trying to merge synchronous and asynchronous traditions

Higher order channel and pattern

«Safe» send-and-forget

Communicating Process Architectures 2013 1
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

Selective Choice ‘Feathering’ with XCHANs
Øyvind TEIG1

Autronica Fire and Security AS2, Trondheim, Norway

Abstract. This paper suggests an additional semantics to XCHANs, where a sender
to a synchronous channel that ends up as a component in a receiver’s selective
choice (like ALT) may (if wanted) become signaled whenever the ALT has been (or
is being) set up with the actual channel not in the active channel set. Information
about this is either received as the standard return on XCHAN’s attempted sending or
on the built-in feedback channel (called x-channel) if initial sending failed. This
semantics may be used to avoid having to send (and receive) messages that have
been seen as uninteresting. We call this scheme feathering, a kind of low level
implicit subscriber mechanism. The mechanism may be useful for systems where
channels that were not listened to while listening on some other set of channels, will
not cause a later including of those channels to carry already declared uninteresting
messages. It is like not having to treat earlier bus-stop arrival messages for the
wrong direction after you sit on the first arrived bus for the correct direction. The
paper discusses the idea as far as possible, since modeling or implementation has not
been possible. This paper’s main purpose is to present the idea.

Keywords. channels, synchronous, asynchronous, buffers, overflow, flow control,
CSP, modeling, semantics, feathering

Introduction

The idea of the suggested semantics appeared after reading Tony Hoare’s lecture “Con-
current programs wait faster” from 2003 [1]. After some pondering of a situation described
there, we saw that it might be viable to use XCHAN [2] as a vehicle for a secondary problem
not mentioned in Hoare’s lecture. The problem is how to avoid having to relate to
information of busses that would potentially stop at a bus stop but heading in the wrong
destination. It was believed that this could map to a new software pattern: feathering.

The word feathering is used like “turning an oar parallel to the water between pulls”
[3]. Metaphorically a pull is like an ALT selective choice. The oar is pushed into the water
at one place: only one channel is taken. But we can hear the oar whip the top of the small
waves on its way saying “was there, but not interested”. So we take the step to name barely
touching the small waves as feathering.

The author is not aware of XCHAN having been implemented in any language or run-
time system. The time when a “channel was a channel” seems to be over; the plethora of
channel types and channel usage seems to increase. Worth mentioning here is Go’s channel
usage and semantics [4], which are quite different from what we are used to in the occam
tradition. The XCHAN is here perceived as being an expansion of the traditional channel
(CHAN) type.

This feathering pattern has not been formally modeled or proven. The paper informally
introduces the ideas. No literature search has been done to find similar or equal ideas.

1 The author works with concurrent software for fire detection systems, but this "industrial paper" does not
necessarily reflect views taken by the company. See: http://www.teigfam.net/oyvind/work/work.html
2 A UTC Fire & Security company. http://www.autronicafire.com

x-channel_bus_0

chan_bus_0 xchan_bus_0
P_BUS_0

P_BUS_STOP

x-channel_bus_1

chan_bus_1 xchan_bus_1
P_BUS_1

x-channel_bus_2

chan_bus_ xchan_bus_2
P_BUS_2

ALT

guard conditions !
0 !
1 !
2

Interested

Feathering
An implicit subscriber pattern built on XCHAN

Not interested

Interested

«CSP: arriving at the CHANnel island»
• My CPA-2000 paper 

www.teigfam.net/oyvind/pub/pub_details.html#CSP:arriving_at_the_CHANnel_island

• This was 9 years before Go

• But 10 years of working with occam

• What influence will Go have?

• Students at NTNU now «love Go»!

• A small step..or?

!42

http://www.teigfam.net/oyvind/pub/pub_details.html#CSP:arriving_at_the_CHANnel_island

Haberdashery

• Channels have no busy-poll: channel (msg, tim, int) drives scheduling

• -> Low power?

• Present CSP processor: www.xmos.com

• «xCore MULTICORE», xC with channels, guaranteed to meet timing
requirements

!43

http://www.xmos.com

Summary
!

• { ?!

• There are other stories from Autronica!

• To learn more Go, register on: golang-nuts

• This lecture will be on my home page / blog:  
http://www.teigfam.net/oyvind/home/

!44

http://www.teigfam.net/oyvind/home/

Summary
!

• {

• There are

• To learn more Go, register on: golang-nuts

• This lecture will be on my home page / blog:
http://www.teigfam.net/oyvind/home/

!45

Thank you!

http://www.teigfam.net/oyvind/home/

