
AUTRONICA, 26 Oct. 1995

Trondheim, 26 October 1995
Øyvind Teig
Autronica

AUTRONICA

Semaphores and Dual-Port Memory

Introduction
During the last years, the price of dual-port memory has dropped to a level where design-
ins in embedded systems has become feasible. A dual-port ram seems attractive, but how
are we actually going to use the thing? The two processors, one on each side of the dual-
port ram, cannot just read and write to the dual-port ram at any time. In order to help the
designers with this problem, the dual-port ram these days are often produced with internal
semaphores, flags that may be owned by only one processor at any time.

These semaphores are only basic building blocks, a scheme has to be built on top of them to
allow data to be safely passed from one processor to the other. Using the semaphores,
several solutions could be implemented. The dual-port ram itself could hold a state variable
that is used during the processors’ arbitration. Another solution would be to guarantee that
the other processor reads and modifies the data within a ‘hard’ time limit.

This article describes a third scheme where no state information inside the dual-port ram
area is used, and no dependence on time exists. Three of the usual 8 hardware-semaphores
are used. The two processors may differ in processing power and speed. The processors on
each side pass through very simple state-machines with only one possible next-state. We
could call the proposed solution ‘ping-pong’, since a privilege is passed back and forth
between the processors continuously.

The solution is simulated with an occam program (see Appendix).

PING-PONG
The scheme describes a privilege that is passed between the processors (fig.1). A processor
may hold the privilege as long as it wants to. When a processor has the privilege, it is free
to do whatever it wants with the buffers. The privilege is passed with the three semaphores
which need to be used for the scheme. The semaphores are named ‘A’, ‘B’ and ‘C’. Fig. 2
shows a complete sequence.

2

Semaphores and Dual-Port Memory Autronica

Semaphore A

Buffer 2

Buffer 1

Semaphore B
Semaphore C

PROCESSOR 1 PROCESSOR 2

Fig.1 - Dual-port RAM

Power-up
Processor 1: A,B,C free get A and B wait 1 second
Processor 2: -”- get C wait 1 second

Repeated forever:
Processor 1: owns A,

B:
read, write buffer free A get C (poll)

Processor 2: owns C: get A (poll) read, write buffer free C

Processor 1: owns B,
C:

read, write buffer free B get A (poll)

Processor 2: owns A: get B (poll) read, write buffer free A

Processor 1: owns C,A: read, write buffer free C get B (poll)
Processor 2: owns B: get C (poll) read, write buffer free B

Fig. 2 - Processor states and data-flow

Each processor has the privilege 3 times, causing a maximum of 6 synchronous
transmissions. Whenever a processor owns two semaphores it has the privilege. Whenever
it wants to pass the privilege to the other processor, it frees the oldest owned semaphore.

Any scheme may be used for interpretation of the buffers. They may be ‘register-based’ or
‘protocol-based’, and data may be overwritten or not. Also, the scheme would protect any
number of buffers.

The scheme is quite fast, as a processor will only have to free one semaphore and poll for
the next between any communication. Alternatively there may be an interrupt when the
next semaphore arrives. The communication will not deadlock because semaphores are
acquired and released in correct order.

It was not as easy as we thought to come up with this very simple solution. A single
semaphore alone cannot be used for this, as it only protects the data, it does not give any
synchronization or direction-indication. A scheme with one semaphore only, once having
released the semaphore, it could be acquired and received by any processor, including the

3

Semaphores and Dual-Port Memory Autronica

processor that just released it. We found no way to implement the communication with two
semaphores only. However, with three semaphores it is possible not to acquire and then
release the same semaphore, nor acquire any two semaphores after each other, nor release
any two semaphores after each other. The sequence of processor 1 is ‘free-get-free-get-free-
get’ of semaphores A,B,C.

Power-up consistency between the two processors must be assured. This could be done by a
simultaneous acquire of the needed semaphores and a time-out before the sequence starts.

It is easy to understand the system with an example of 2 persons wanting to share an ice-
cream. They could use three balls to help them share it, one red, one blue and one green, all
lying on the table initially. They have to agree on the ball color sequence (r-b-g-r-b-g..), and
who gets the first lick. In order to lick the ice-cream, one has to hold two balls. Try it!

APPENDIX: Occam-2 code to simulate dual-port RAM and two
processors

Occam-2 is a language that supports parallel processes through a PAR construct, making the
real-time scheduler invisible and unreachable. The language is strongly typed and has a set
of rules that, together with the lack of pointers and (not compile-time known) dynamic
memory handling, make programming virtually waterproof. It is a small language which is
easy to learn. It is based on the CSP-notation (Communicating Sequential Processes, a
formal theory developed by C.A.R. Hoare) - as is the real-time parts of Ada. The main part
of the program is seen below:
PROC Test.DualPort (CHAN OF SP fs, ts, []INT mem)
 ... PROTOCOLS
 VAL Ticks.OneSec.LowPri IS 15625:

 INT bufferOfDualPort:
 #PRAGMA SHARED bufferOfDualPort -- This breaks an occam rule

 VAL NoOfProcessors IS 2:
 VAL NoOfSema IS 3:

 ... PROC Delay
 ... PROC DualPortRam
 ... PROC Processor

 [NoOfProcessors][NoOfSema]CHAN OF Command command:
 [NoOfProcessors][NoOfSema]CHAN OF Reply reply:
 SEQ
 bufferOfDualPort := 0
 PAR
 DualPortRam (command, reply)
 Processor (0, [0,1], command[0], reply[0])
 Processor (1, [2], command[1], reply[1])
:

The code listing is folded. All (bold text) lines beginning with 3 dots are folds. Later on this
fold crease is repeated as a heading at the place where the contents of the fold is present.

The dual-port ram’s data space is simulated with a single INT, whose privilege to own is
passed between the two processors. Occam already supports channels (CHAN) and
protocols (PROTOCOL), all communication between parallel processes (PAR) is done via

4

Semaphores and Dual-Port Memory Autronica

synchronous, unbuffered uni-directional channels. Occam does not have semaphores
because shared resources are handled by process encapsulation in servers. Yet the whole
purpose of this program is to simulate a shared buffer and semaphores. In order to make the
shared buffer we had to break an occam rule with the #PRAGMA SHARED compiler
directive.

DualPortRam

Processor 1 Processor 2

command [0] command [1]

reply [0]
reply [1]

Init: own sema A,B Init: own sema C

33

3

3

Fig. 3 - Command flow diagram

What we have already seen in the program listing is drawn as a command-flow diagram
above. Each processor communicates with the DualPortRam via three command
channels (one for each semaphore), and DualPortRam replies over three reply channels
(one for each semaphore). This would correspond to a separate address for each query to a
real dual port ram.
... PROTOCOLS
PROTOCOL Command IS BOOL:
VAL AskForGrant IS TRUE:
VAL ToRelease IS FALSE:

PROTOCOL Reply IS BOOL:
VAL Granted IS TRUE:
VAL Denied IS FALSE:

The occam protocols are defined above. Both are simple protocols, but occam also supports
variant protocols which are user-defined protocol formats.

Now let us look at the time aspect of occam. TIMER is a primitive data type, and the basic
unit is a tick (1µs on high priority processes and 64µs on low priority processes). This
procedure is needed for the optional time-delay.

5

Semaphores and Dual-Port Memory Autronica

... PROC Delay
PROC Delay (VAL INT Ticks)
 INT time:
 TIMER clock:
 SEQ
 clock ? time
 clock ? AFTER time PLUS Ticks
:

Now let us look at the DualPortRam code. The most interesting thing here is the CHAN
parameters. Both command and reply are two-dimensional arrays of channels. The
dimensions represent processors (2) and semaphores (3). The occam compiler assures
that there is only one sender and one receiver per channel.
... PROC DualPortRam
PROC DualPortRam ([][]CHAN OF Command command,
 [][]CHAN OF Reply reply)

 [NoOfSema]BOOL sema:
 VAL SemaFree IS FALSE:
 VAL SemaInUse IS TRUE:
 SEQ
 SEQ i = 0 FOR SIZE sema
 sema [i] := SemaFree
 ... Process processor commands and reply
:

Processing of processor queries is done below. Observe that the question mark (?)
passively waits for data on a channel, and the exclamation mark (!) sends data over a
channel whenever there is a receiver ready to receive the data (also see fig. 4):
... Process processor commands and reply
VAL NextALT IS [1,0,1]:
INT processor:
SEQ
 processor := 0
 WHILE TRUE
 change := FALSE
 PRI ALT p = 0 FOR NoOfProcessors
 PRI ALT s = 0 FOR NoOfSema
 BOOL cmd:
 command [NextALT[p+processor]][s] ? cmd
 SEQ
 thisSema IS sema[s]:
 IF
 cmd = AskForGrant
 reply. IS reply [NextALT[p+processor]][s]:
 IF
 thisSema = SemaInUse
 reply. ! Denied
 thisSema = SemaFree
 SEQ
 reply. ! Granted
 thisSema := SemaInUse
 cmd = ToRelease
 thisSema := SemaFree
 processor := NextALT[p+processor] -- Fair scheduling of processors

This code implements a typical server, that sits idly waiting for a command coming from
any processor (PRI ALT p = 0 FOR NoOfProcessors) for any semaphore
(PRI ALT s = 0 FOR NoOfSema). The code actually implements waiting for 6
channels (2 by 3). It is the “command [Next[p+processor]][s] ? cmd” - line
that is set up 6 times. The first command to be received is processed; if the semaphore is in

6

Semaphores and Dual-Port Memory Autronica

use, a denial is replied; if it is free, it is granted and locked again. DualPortRam does not
know which processor is using the semaphore, it only knows its binary state. Observe
that decimal points in occam names mean nothing more than underscore in C names.
(“reply” and “reply.” are two distinct names)

Whenever one processor has been served, the other processor is placed first in the
ALT-queue of passive waiting. Without this explicit control of the ALT fairness, we had to
introduce a delay in the processors so that they should not re-ask for a semaphore
immediately. This would cause the releasing semaphore query never to be served. With the
fair scheduling, the processors do not need this delay. No good system design should
rely on inserted repeated delays.

Now let us look at the processor code:
... PROC Processor
PROC Processor (VAL INT IProc,
 VAL []INT Init,
 []CHAN OF Command command,
 []CHAN OF Reply reply)

 INT FUNCTION Prev (VAL INT This) IS ((This + (NoOfSema-1)) REM (SIZE command)):
 INT FUNCTION Next (VAL INT This) IS ((This + 1) REM (SIZE command)):

 INT iOfLastSema, noOfSemaOwned, myLastBufferValue:
 SEQ
 ... Ask for initial semaphores
 ... Init myLastBufferValue
 Delay (Ticks.OneSec.LowPri)
 ... Repeatedly hold and release buffer
:

The semaphores are initialized according to the Init array:
... Ask for initial semaphores
SEQ i = 0 FOR SIZE Init
 VAL I IS Init [i]:
 BOOL thisReply:
 SEQ
 command [I] ! AskForGrant
 reply [I] ? thisReply
 IF
 thisReply = Granted
 SKIP
 thisReply = Denied
 CAUSEERROR()
noOfSemaOwned := SIZE Init

After this the buffer value needs to be initialized:
... Init myLastBufferValue
IF
 noOfSemaOwned = 2
 myLastBufferValue := 0
 noOfSemaOwned = 1
 myLastBufferValue := 1

7

Semaphores and Dual-Port Memory Autronica

And then comes the real processor code:
... Repeatedly hold and release buffer
iOfLastSema := Init [(SIZE Init) - 1]
WHILE TRUE
 IF
 noOfSemaOwned = 1
 ... Ackquire a second semaphore = receive buffer
 noOfSemaOwned = 2
 SEQ
 ... Owns buffer: Read, increment, write and test buffer
 ... Release first of two semaphores = send buffer

Below is the code that repeatedly asks for a second semaphore. If it is denied, it waits. As
described earlier, this waiting is not needed. However, this time could be looked upon as
the time when the processor is able to do other things than ping-pong the data back and
forth.
... Ackquire a second semaphore = receive buffer
INT iOfNextSema:
SEQ
 iOfNextSema := Next (iOfLastSema)
 command [iOfNextSema] ! AskForGrant
 BOOL thisReply:
 SEQ
 reply [iOfNextSema] ? thisReply
 IF
 thisReply = Granted
 SEQ
 noOfSemaOwned := 2
 iOfLastSema := iOfNextSema
 thisReply = Denied
 IF
 IProc = 0
 Delay (Ticks.OneSec.LowPri / 10)
 IProc = 1
 Delay (Ticks.OneSec.LowPri)

As we can see in the code above, one processor has been given time to serve the
DualPortRam once per second, the other 10 times per second. This means that the fastest
processor will do 9 queries with a denial for each success. Full speed with no delay
caused the buffer value to be incremented to 10000 in 3 seconds, including the original one
second delay.

Whenever it owns 2 semaphores, the processor is able to do whatever it wants with the
buffer. A system could handle several buffers through this (3-semaphore) scheme, and they
could be assigned directions as well. With three buffers, there could be one for each
direction (for command/reply) and one for bidirectional data ("register"-based). Our test
program tests to see whether the other processor has incremented the value by 1, then it
increments the value and sends it on.
... Owns buffer: Read, increment, write and test buffer
IF
 bufferOfDualPort = myLastBufferValue
 SKIP
 bufferOfDualPort <> myLastBufferValue
 CAUSEERROR()
myLastBufferValue := bufferOfDualPort + 2
bufferOfDualPort := bufferOfDualPort + 1

After this the program sends the buffer by releasing the oldest of the two semaphores:

8

Semaphores and Dual-Port Memory Autronica

... Release first of two semaphores = send buffer
command [Prev (iOfLastSema)] ! ToRelease
noOfSemaOwned := 1

Processor:
INT iOfNextSema:
SEQ
 iOfNextSema := Next (iOfLastSema)
 command [iOfNextSema] ! AskForGrant
 BOOL thisReply:
 SEQ
 reply [iOfNextSema] ? thisReply
 IF
 thisReply = Granted
 SEQ
 noOfSemaOwned := 2
 iOfLastSema := iOfNextSema
 thisReply = Denied
 IF
 IProc = 0
 Delay (Ticks.OneSec.LowPri / 10)
 IProc = 1
 Delay (Ticks.OneSec.LowPri)BOOL
--

DualPortRam:
BOOL cmd:
command [NextALT[p+processor]][s] ? cmd
 SEQ
 thisSema IS sema[s]:
 IF
 cmd = AskForGrant
 reply. IS reply
 [NextALT[p+processor][s]:
 IF
 thisSema = SemaInUse
 reply. ! Denied
 thisSema = SemaFree
 SEQ
 reply. ! Granted
 thisSema := SemaInUse
 cmd = ToRelease
 thisSema := SemaFree
 processor := NextALT[p+processor]

Fig. 4 - Communication - an example

Some of the communication parts are illustrated above, where a part from processor and
a part of DualPortRam have been placed adjacent to each other.

The code described is complete, has been fully tested and is working. Code to report to the
screen has been stripped off.

The occam1 code was tested on an SGS-Thomson transputer PC plug-in board. Occam is
now also available to non-transputer users. A system called SPOC (Southampton Portable
Occam Compiler) generates ANSI-C. Also, a compiler called KROC (Kent Retargetable
Occam Compiler) now generates code that runs on DEC Alpha running O.S.F. 3.0 and
SPARC running SunOS/Solaris systems. Occam may also run on PC's under a DOS
extender. For further information try the www-sites below:
<url:http://www.hensa.ac.uk/parallel/occam/documentation/>
<url:http://www.hensa.ac.uk/parallel/occam/projects/occam-for-all/kroc/>



1 Occam is a registered trademark of SGS-Thomson Microelectronics (previously Inmos)

