
Communicating Process Architectures 2013 1
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

Selective Choice ‘Feathering’ with XCHANs
Øyvind TEIG1

Autronica Fire and Security AS2, Trondheim, Norway

Abstract. This paper suggests an additional semantics to XCHANs, where a sender
to a synchronous channel that ends up as a component in a receiver’s selective
choice (like ALT) may (if wanted) become signaled whenever the ALT has been (or
is being) set up with the actual channel not in the active channel set. Information
about this is either received as the standard return on XCHAN’s attempted sending or
on the built-in feedback channel (called x-channel) if initial sending failed. This
semantics may be used to avoid having to send (and receive) messages that have
been seen as uninteresting. We call this scheme feathering, a kind of low level
implicit subscriber mechanism. The mechanism may be useful for systems where
channels that were not listened to while listening on some other set of channels, will
not cause a later including of those channels to carry already declared uninteresting
messages. It is like not having to treat earlier bus-stop arrival messages for the
wrong direction after you sit on the first arrived bus for the correct direction. The
paper discusses the idea as far as possible, since modeling or implementation has not
been possible. This paper’s main purpose is to present the idea.

Keywords. channels, synchronous, asynchronous, buffers, overflow, flow control,
CSP, modeling, semantics, feathering

Introduction

The idea of the suggested semantics appeared after reading Tony Hoare’s lecture “Con-
current programs wait faster” from 2003 [1]. After some pondering of a situation described
there, we saw that it might be viable to use XCHAN [2] as a vehicle for a secondary problem
not mentioned in Hoare’s lecture. The problem is how to avoid having to relate to
information of busses that would potentially stop at a bus stop but heading in the wrong
destination. It was believed that this could map to a new software pattern: feathering.

The word feathering is used like “turning an oar parallel to the water between pulls”
[3]. Metaphorically a pull is like an ALT selective choice. The oar is pushed into the water
at one place: only one channel is taken. But we can hear the oar whip the top of the small
waves on its way saying “was there, but not interested”. So we take the step to name barely
touching the small waves as feathering.

The author is not aware of XCHAN having been implemented in any language or run-
time system. The time when a “channel was a channel” seems to be over; the plethora of
channel types and channel usage seems to increase. Worth mentioning here is Go’s channel
usage and semantics [4], which are quite different from what we are used to in the occam
tradition. The XCHAN is here perceived as being an expansion of the traditional channel
(CHAN) type.

This feathering pattern has not been formally modeled or proven. The paper informally
introduces the ideas. No literature search has been done to find similar or equal ideas.

1 The author works with concurrent software for fire detection systems, but this "industrial paper" does not
necessarily reflect views taken by the company. See: http://www.teigfam.net/oyvind/work/work.html
2 A UTC Fire & Security company. http://www.autronicafire.com

http://www.teigfam.net/oyvind/work/work.html
http://www.autronicafire.com/

2 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

The occam language [5] is used as a vehicle for the reasoning here because of its
clean design. However, Listing 1 will show ANSI C macro usage, close to how we might
have implemented it at Autronica.

1. Original XCHAN

Figure 1. XCHAN is CHAN plus x-channel.

We repeat the basics from [2]. The whole idea with XCHAN is to merge asynchronous and
synchronous traditions and allow application level (a sender or server) to handle overflow
while it always is allowed to continue (like accept new input). XCHAN may be buffered or
not; in the latter case a buffer could instead be inside the sender, to allow more control of
overflow handling like flushing (see Figure 1). Also shown by Figure 1, an XCHAN is like a
standard CHAN with a bundled x-channel feedback channel. This feedback originates in the
scheduler3. The sending on XCHAN always returns with a status telling about success or not
success; so sending never blocks. In the success case the message passes through like for a
standard CHAN, and all is done. Not success means that there was no reader or buffer
available. In this case the sender is required to listen on the x-channel and not send again.
When x-channel arrives the sender must commit to send immediately - old, new or even
data ignorantly uninteresting to the receiver. The receiver side does not know whether data
arrived on an XCHAN or a CHAN; and the ALT as seen by the application in the receiver is
not changed from a standard ALT. The discussion uses standard single channel output, not
from a selective choice with output guards. The receiver side is a selective choice with
input guards only, or a single channel input.

The semantics in summary:

1. XCHAN may be used in any type of input or output construct except sending from a
selective choice with output guards (not in occam anyhow).

2. The sending call never blocks but returns a status value.
3. If the sending call returns success then the message has been taken by the channel

(if buffered) or by a receiver (if non-buffered). This may be repeated any number of
times, without use of the x-channel.

4. If the sending call returns await_commit then the sender is committed to listen on
the x-channel amongst its other work. This may be PRI ALTing on the x-channel

3 We will mention the runtime scheduler several times in this paper, even if it would be invisible if XCHAN
and feathering were burnt into a language. Still scheduler is seen as having some value for the reasoning.

 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs 3

along with other input sources or it may mean regular polling of the x-channel.
When the x-channel is triggered, the receiver is committed to receive (if the
XCHAN is unbuffered) or the channel has space (if buffered) and the sender must
send (old or new data) as soon as possible.

To synchronise the sender and receiver when they are both committed, the receiver’s input
will be two phased. The first phase will accept the request and the second will take the data.
This is an implementation detail invisible to the programmer.

To prepare XCHAN for feathering (discussed in the following sections):

a. We will extend the sending return value set to also include a feathered value, in
addition to success and not success, the latter called await_commit.

b. We will let x-channel carry data with x-committed, x-feathered or x-unfeathered
values (naming convention is to prefix with ‘x_’ all that comes in on x-channel).

The x-channel usage may alternatively be implemented to provide the sender with a
precondition and then become involved on every sending [6]. We have not used these
semantics here.

2. XCHAN with Feathering Semantics

2.1 Problem: Busses in the Wrong Direction

Hoare’s lecture [1] starts by describing the average waiting time for a bus that will take a
passenger from A to B. Instead of taking a particular route and wait for it to arrive, Hoare
shows that the standard practice in concurrent programming to instead take the first bus
which could take the passenger to the same place (e.g. bus routes 0 and 2 in Figure 2,
Section 2.2) would make the system “wait faster” in Hoare’s wording. The waiting time
may become shorter than one would assume at first thought, Hoare shows.

This author’s first whim to this was to think of each bus route as a software process,
and the bus stop as a multiplexer, containing a selective choice. In occam this is an ALT;
in most modern embodiments this is a variant of select. Being used to thinking that any
unnecessary communication should be avoided; we saw that messages of wrong busses
arriving at the bus stop might be a problem. Entering just any first bus could be wrong, as
having to rise from the bus stop’s bench every time to inspect the line number on the bus
perhaps would be unnecessary. Being near-sighted easily causes more work than necessary
- and besides, entering a wrong bus could cause a meeting to be lost. So we would not want
a paradigm where we would be fed and have to inspect every bus passage or message.

A process could enter an ALT and then switch off the set of non-interesting bus arrival
messages, by having the Boolean expression in those guards evaluate to FALSE. This way
the process could wait for only the correct set of buses. This is a standard channel based
programming pattern.

What happens after the first correct bus has arrived is not of interest. However, if in
fact uninteresting buses had arrived during the waiting time, the bus stop process would
have to treat those messages of older arrivals afterwards, even with the pattern described.
The bus processes may be blocking to send - or have sent and forgotten the message in a
queue or buffered channel. There is no way to avoid having to flush these messages. But we
could have avoided sending them.

4 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

2.2 Suggestion

It appeared that an XCHAN as described in [2] would not help; but might it be a possible
vehicle on which to build a mechanism to avoid having to send the old bus arrival
messages? We think so.

Unlike the traditional CHAN, the XCHAN sender already has a means to treat messages
that were not sent immediately. As we have seen we suggest this will mostly be interesting
when:

1. the receiver end is a pre-conditioned guard in an ALT
2. the XCHAN is not buffered (see above)

Events participating in an ALT are “enabled”. When or if one is ready and selected, both it
and all the enabled channels are “disabled”; the ALT is “torn down”. So, with CHAN or
XCHAN there already is a way to handle the interesting channels that did not win the ALT.

However, in the present implementation of an ALT, a guard’s Boolean pre-condition
(if present) is evaluated and if the result is FALSE, then the channel is not touched. To the
channel it looks like the input side is not present, like no ‘call’ to the input4.

We propose marking XCHAN guards that have FALSE pre-conditions in a blocked
receiving ALT as feathered - i.e. that this process is not interested in them5. A sender
attempting to send to an XCHAN in that state (or has already attempted to send and been told
to wait) is now signalled (on the x-channel) about that state. The sender should abandon
its message and should not send anything more until the XCHAN is unfeathered, which
happens at the end of the ALT (and signalled on the x-channel).

Figure 2. XCHAN (array of 3) and feathering, with only buses #0 and #2 possible to ride.

Figure 2 shows an example of this. The bus stop process is waiting on its ALT for

either buses 0 or 2 (the channels from those buses have TRUE pre-conditions) – but is, on
this occasion, not interested in bus 1 (whose channel is pre-conditioned FALSE).

4 This author is not aware of any implementation where it is any other way.
5 This is information that is ’lost’ in the traditional semantics of a channel.

 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs 5

2.3 Feathering Semantics (Discussion)

With feathered semantics we are given a means not to have to send that unnecessary data.
This section is a discussion. Section 2.4 tries to summarise.

A sending is done with an output attempt in the XCHAN the usual way. However, we
need to declare that we want feathering semantics.

2.3.1 Successful immediately

Sending attempt will go through as successful if the receiver was able to receive. As
mentioned, the x-channel is not involved.

2.3.2 Unsuccessful

If sending were unsuccessful there are two outcomes: either there was no receiver or the
channel had been feathered, meaning that the receiver is already in an ALT waiting on other
events and explicitly excluding the sender's XCHAN. In both cases the sender receives this
status (success, feathered or await_commit) after the XCHAN output. It never blocks.

Figure 3. Two mind map scenarios that show message avoidance.

Figure 3 resembles Figure 2, but in addition to topology (process, data flow) it also

attempts to overlay sequences. The diagram may be seen as an informal mind map show-
ing message avoidance only. The first scenario (top) shows an initial feathered which is
terminated with an x-unfeathered. The second scenario shows first an initial await_commit
(centre) followed by an x-feathered and final x-unfeathered (bottom).

The sender is finished if it receives success. It will handle feathered at application
level, so it is per design what it would do with the message that seemed to be uninteresting.
We shall see below that feathered is not a state in which the application has finished with
its attempted send.

6 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

2.3.3 Towards feathering

If the sender gets an await_commit return then it is obliged to listen on the x-channel. If
the receiver commits to the read (or buffer space in the XCHAN becomes available), then x-
committed will be sent and the sender must send as soon as possible. If it receives x-
feathered then it means that the receiver has already feathered the channel, and in this way
told any potential sender (of which it is not aware) that it is not interested. The sender
should treat this as it will with the feathered status return.

2.3.4 Ready for next with x-unfeathered

Observe that when a message has been “warned away” with feathering we propose that
there should be no undo; that it shall not be possible not send anyhow. If the receiver end of
the channel later should becomes ready that should in the default semantics be for a next
message.

Feathered status is never returned when the receiver is not in the act of entering or
being in an ALT, so it must be removed when the ALT is torn down.

It is important that there should be no divergence (livelock) between the sender and the
receiving ALT. The allowable action for a sender after seeing a feathered receiver end
should probably be the same for a feathered status return or an x-feathered value. In the
first case the receiver is already in an ALT with that XCHAN guard pre-conditioned FALSE
(we have already mentioned that we would never return feathered if the receiver is
anywhere else in its code). Retrying to send would in that case cause divergence, as the
same feathered status return would be repeated infinitively. The same would happen with
an x-feathered value. Trying to send immediately would therefore also cause a repeated
feathered status return. Therefore, after any feathered status we need a channel ‘link level’
intermediate state to avoid this. During this state it is not allowed to resend. To terminate
this state we propose to wait for an x-unfeathered value.

This is sent when the ALT has been taken by one of the other inputs after having
waited; on ‘tearing down’ the ALT. It will send this to all the feathered x-channels.

2.3.5 Observation

The described scheme certainly motivates a need to model feathering semantics and to see
if there are any unseen pitfalls. Also, this pattern may be asserted with a proper rule for the
compiler to (usage) check.

Section 2.4 summarises the proposed semantics of feathering. Section 2.5 gives a
coding template for a process sending on an XCHAN with feathering. Further discussion is
in Section 3.

 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs 7

2.4 Feathering Semantics (Summarised)

This is a summary of the suggested semantics, not a formal model.

1. Feathering semantics inherits XCHAN semantics (see Section 1)
a. However, output and input constructs are limited by point 2 (here)
b. This may not include buffered XCHAN; we are uncertain about the usability

of feathering semantics in that case.
2. Feathering is possible if the receiver end of XCHAN being processed by an ALT, not

a single channel input. However, the sending side is a single channel output, not part
of an ALT with output guards (not possible in occam).

3. Feathering semantics is specified with a parameter in the XCHAN send call.
4. The feathered status is returned to a sender that is trying to send when a receiver is

in an ALT and the requested channel has been tagged by the receiver as not-
interesting (i.e. its pre-condition is FALSE).

5. The feathered status is sent to a sender on x-channel if it has been trying to send
but got await_commit reply; when the receiver enters an ALT and the requested
channel is being tagged as not-interesting.

a. The ALT in the receiver sends these synchronous messages to all pre-
condition excluded feathered XCHAN senders at the end of the ALT setup if
the ALT blocks - i.e. it is not immediately taken by another guard (channel,
timeout or SKIP).

b. None of these will block indefinitely, as all the receivers will already have
committed to listen on x-channel.

6. Whenever a sender knows that a channel is feathered it shall obey the rule not to
resend before an unfeathered message has been received on x-channel.

7. The unfeathered status is delivered to a feathered x-channel when the ALT is later
on taken (by another guard) and ‘torn down’, in the same synchronous scheme as
described above (5.a-b)

8. The x-channel will only carry an x-unfeathered after a feathered situation.
9. The x-channel will only carry x-feathered or x-committed after an await_commit

status return on the initial sending call.
10. A receiver could possibly do a system call to learn if a message in fact did get

rejected. This information could alternatively be delivered on an “n-channel”6 that
could be “parallel” with the XCHAN’s input on the receiver side. This probably is a
complicating matter since type of channel is transparent on the receiver side. We
will not discuss this here.

6 Like “x-channel” on the sender side of XCHAN and “n-channel” on the receiver side of XCHAN.

8 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

2.5 Code example

01 CP->Tag = READY; // READY, SUCCESS, AWAIT_READY, FEATHERED
02 while (true) {
03 PRIALT ();
04 ALT_CHAN_IN (X_CHANNEL, X_Tag); // X_COMMITTED,
05 // X_FEATHERED, X_UNFEATHERED
06 ALT_CHAN_IN (CHAN_DATA_IN, Value);
07 ALT_END (); // delivers ThisChannelId
08
09 switch (ThisChannelId) {
10 case X_CHANNEL: { // After CHAN_OUT ret AWAIT_READY or FEATHERED
11 if (X_Tag == X_FEATHERED) {
12 ... handle not interested
13 CP->Tag = FEATHERED; // stop
14 } else if (X_Tag == X_COMMITTED){
15 CHAN_OUT (XCHAN_DATA_OUT,Value,NIL); // will succeed
16 CP->Tag = READY; // finished
17 } else { // (X_Tag == X_UNFEATHERED)
18 CP->Tag = READY; // finished
19 }
20 } break;
21 case CHAN_DATA_IN: {
22 if ((CP->Tag == AWAIT_READY) or (CP->Tag == FEATHERED)) {
23 ... handle overflow (decide what value(s) to discard)
24 } else { // (CP->Tag == READY)
25 CP->Tag = CHAN_OUT (XCHAN_DATA_OUT,Value,ALLOW_FEATHERING);
26 if (CP->Tag == SUCCESS) {
27 CP->Tag = READY; // finished
28 } else if (CP->Tag == FEATHERED) {
29 ... handle not interested
30 } else { // (CP->Tag == AWAIT_READY)
31 }
32 }
33 } break;
34 }
35 }

Listing 1. Overflow and ‘feathered’ handling on an XCHAN (ANSI C and macros).

The listing above basically follows listing 1 in [2]. CP is the Context Pointer to process data
that has been allocated on the heap. It shows an example of a server that always can input
new data since output is non-blocking. Data arriving on CHAN_DATA_IN is always accepted
(line 21) within a bounded time (since no code in listing blocks and an X_CHANNEL signal
can only happen at most twice by a failed send on XCHAN_DATA_OUT, in response to the
previous input from CHAN_DATA_IN). If there is no overflow situation then line 25 attempts
to send. If this succeeds immediately with SUCCESS, it is finished. If the result is FEATHERED
then handle the fact that the receiver was “not interested” immediately (e.g. abandon
processing of this input). If the result is AWAIT_READY or FEATHERED then loop around to
wait for an X_CHANNEL signal; or more from CHAN_DATA_IN. Observe that in the example
we always include X_CHANNEL in the ALT; this is ok since it will not be signaled out of order
(though it might be more efficient to exclude it, by pre-conditioning, when not expected). If
the X_CHANNEL signal is X_FEATHERED, then handle this “not interested” state (responses in
lines 12 and 29 should be the same). If it is X_COMMITTED, send the latest received value
(line 15). Once FEATHERED, it cannot retry sending before X_UNFEATHERED is received.
Observe that we now use a PRIALT in 03, so CHAN_DATA_IN cannot jam X_CHANNEL. The
code has no explicit error handling and there are no compiler usage checks.

 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs 9

3. Discussion

3.1 Feathering is “Low Level”

The receiver is able to tell to the sender at a potential synchronisation point that it is ‘not
interested’. However, it is not able to give any reason. It is a basic, low-level type of
rejection. This way the ALT construct need not be changed. It may also be discussed
whether alternatively ‘sending’ some reason across is counter-productive. One must
probably take care that this does not become an opposite direction channel hidden in the
channel. We therefore propose only the lowest level: the implicit “not interested”.
(However, a higher level channel with these properties could potentially be part of some
other software pattern.)

There is no other type of state exchange either. The sender may not know the
receiver’s state; like a priori information whether a channel would have become feathered
or if the receiver is just doing something else; like being in a session with a third party and
that it certainly would want to receive the pending message later. Coupling between
processes should be kept at a minimum, and feathering does not seem to increase it – rather
the opposite – with its implicit subscriber mechanism and, after all, less point-to-point
messages between the parties.

Instead of sending on XCHAN with a parameter, we could have defined a new type of
channel called FXCHAN, (“Feathering XCHAN”) with feathering as standard semantics. In
that case the receiver would know about its feathering capability. However, a generic type
would make the semantics selectable at run-time (although with some cost: FALSE pre-
conditioned XCHAN guards always need processing). Usage rules would be a little more
complex with XCHAN plus parameter, certainly also depending on whether this parameter is
a variable or an invariable in the actual scope.

With the suggested scheme the receiver will not know if it will implicitly stop a
message by feathering, or if feathering has any impact. It would only know that this new
XCHAN or FXCHAN has a potential to be feathered.

Sending outdated messages across would also need a design criterion as to decide
whether the message is outdated. This also implies some degree of coupling between the
processes (like a common clock).

Like any language primitive there may be uses for feathering and cases where it is not
applicable or plainly wrong.

As mentioned we have not studied the alternative precondition semantics of x-channel
[6].

3.2 Anti-Deadlock

We argue that the anti-deadlocking property of XCHAN is kept by this additional semantics.
We have shown that the extra synchronisation needed to feed x-feathered or x-unfeathered
back on the x-channels is not blocking, asserted by rules and contracts. However, the
associated scheduling may cause the sender in a ‘new round’ to block on other channel
outputs, but this will be part of another communication graph. Therefore XCHAN in itself
still breaks any cycle (and ‘removes’ deadlock).

Setting of the feathered status in the ALT construct is done by calls to scheduler code.
It has full control of all parties (no pre-emption), so there should be no race between the
two sides of XCHAN. However, this needs to be further studied for multicore or distributed
systems.

10 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

3.3 Run-Time Penalty

As we see, there would have to be some reporting back to the sender on every channel that
is feathered. One might argue that the goal not to send unnecessary data is compromised
when some other (data or not) will be sent instead. Not having to send lots of, for example,
1500 bytes long messages would probably save bandwidth. However, the language design
to offer the receiver a pattern of an implicit subscriber mechanism is perhaps even more
interesting. It is this idea that has driven the writing of this paper.

Some communication and associated scheduling will be removed. Since nothing is
free, there is a cost associated with supplying the information enabling this removal. The
extra two communications for x-feathered and x-unfeathered on the x-channels will after
all interfere with state in the sender, which is then allowed to take proper action, like
reporting back to some other component.

There is no busy-polling in any of the algorithms.

3.4 Feathering Requires “Visible” Pre-Conditions on ALT Guards

An occam ALT with conditional guards may be transformed to an IF structure:

01 ALT -- feathering semantics hidden
02 condition.0 & in.0 ? x.0
03 ... response 0
04 condition.1 & in.1 ? x.1
05 ... response 1

10 IF -- no feathering
11 condition.0 AND condition.1
12 ALT
13 in.0 ? x.0
14 ... response 0
15 in.1 ? x.1
16 ... response 1
17 condition.0 -- condition.1 must be FALSE
18 SEQ
19 in.0 ? x.0
20 ... response 0
21 condition.1 -- condition.0 must be FALSE
22 SEQ
23 in.1 ? x.1
24 ... response 1

Listing 2. Feathering loss of semantic equivalence (occam).

The programmer must be aware that, for feathering semantics, the pre-condition on the

guard must be “visible” in the code. Without feathering, the two blocks of code (lines 1-5
and 10-24) above are equal. With feathering, the ALT in line 12 will never take part in any
feathering; neither will the two SEQ blocks starting at lines 18 and 22. Since feathering
means to have a “tap to turn off”, all should be obvious: there is no “tap” or boolean
expression. The sender does not know which of the methods are used; but the block starting
in line 10 will return neither feathered status nor x-feathered nor x-unfeathered.

The receiver may use this loss in semantic equivalence to ensure that feathering is off
(although the IF-version gets exponentially more complex to program as the number of
guards in the ALT increases). Expressions evaluated to FALSE are not so easily spotted.
The code on the sender side should probably not be implemented with this knowledge: an

 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs 11

XCHAN’s receiver may at any time decide to engage in feathering. The compiler or linker
could inform about this. This would probably also go for visible invariant conditionals. But
there is nothing wrong with coding that at a certain time all components are hard coded as
interesting.

3.5 Feathering Adds Non-Determinism

Whether a message gets sent or not depends on when the attempt is made. This adds non-
determinism. However, feathering should only be used when this non-determinism is
deliberate. Just as using XCHAN opens for application control of message handling (like
data loss) on the sender side of the XCHAN, feathering takes the receiver’s face value for
throwing a message. “Not listening on that ear” really means “please, drop it” – by design.

By hiding this non-determinism inside a block that will equally allow different
behaviour, feathering should not hinder any formal proofs.

4. Alternative

We have not discussed whether feathering solves real problems where programmers have
longed for a solution.

An alternative to this mechanism could be an explicit subscriber mechanism. Mixing
real life and software we could say that the bus-stop subscribes to the busses, on behalf of
the passenger, which of the busses that are interesting. When the correct bus has been
taken, all busses are unsubscribed to. This way there are no arrival messages to flush,
provided there are no possible race conditions in the algorithm used. Some of us may have
missed a bus if it were so close to the bus in front that we did not see the badge.

Feathering may also be seen as an implicit embodiment of the publish-subscribe
pattern [7]. Feathering status would be an a not publish status handled to the publisher
(sender) when the subscriber (receiver) implicitly has decided not to subscribe. However,
differently from the publish-subscribe pattern there is no explicit message or calls done by
the subscriber to subscribe to publishments or to unsubscribe. Examples for the usability of
feathering may probably be collected from the publish-subscribe pattern examples.

Since feathering may be considered a low-level implicit subscriber mechanism, it has
no messages to flush. The algorithm we have described here should be without race
condition, but as mentioned – this is not formally proven.

5. Summary

The proposed XCHAN [2] already provides actionable feedback to the sender on the state of
the receiver. This proposal extends that information (beyond success/fail/ready) to include
feathered (i.e. not interested, do not resend) and unfeathered (which ends a period of
feathering). Feathered signals are sent (to relevant potential senders) if the receiver's ALT
blocks (and the relevant XCHAN guard is excluded by a FALSE pre-condition). Unfeathered
signals are sent upon exit from the ALT.

6. Conclusion

This paper takes the rather drastic attempt to change the state of an XCHAN when, in the
standard occam semantics of CHAN, there would be no state change when not touching a

12 Ø. Teig / Selective Choice ‘Feathering’ with XCHANs

guard of an ALT. The suggested feathering semantics exploits information in the running
code that a channel's receiving end has been excluded from an ALT – and propagates this
information to a potential sender. This was our starting point. We have suggested a usage of
this idea that could be of interest in some systems.

The sum of the benefits of XCHAN and feathering may justify adding these features to
a concurrent language.

This paper is a study of usage and discussion of the possible semantics, as well as
some implementation issues. We have not formally proven that feathering is possible, but
the reasoning above should be a starting point for such proofs.

We hope that the ideas will cause language designers to take feathering further.
Perhaps the pull of the oar will take the ideas safely to port?

Acknowledgements

I am grateful to Professor Sverre Hendseth of NTNU, Trondheim, for his encouragement
and enthusiasm about the theme. I also thank the peer review readers and the editor for
thoroughly pointing out inconsistencies and more subtle matters.

References

[1] Tony Hoare, Concurrent programs wait faster. Microsoft Research, 2003.
See http://research.microsoft.com/en-us/people/thoare (ref. notes on the first two pages)

[2] Øyvind Teig, XCHANs: Notes on a New Channel Type. In: P.H. Welch et al., Communicating Process
Architectures 2012 (CPA-2012), Proceedings of the 34th WoTUG Technical Meeting, ISBN 978-0-
9565409-5-9. Open Channel Publishing Ltd., 2012, pp. 155-170.
See http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

[3] ‘Feathering’, defined in OneLook, see http://www.onelook.com/?w=feathering&ls=a
[4] Google Go programming language by Robert Griesemer, Rob Pike, and Ken Thompson. See “The Go

Programming Language Specification” at http://golang.org/ref/spec
[5] INMOS Limited, Occam 2 Programming Manual, Prentice-Hall International, ISBN 0-13-629312,

1988. See http://www.wotug.org/documents.shtml
[6] Peter H. Welch. An occam Model of XCHANs,

https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs , 2013.
[7] Publish-subscribe pattern. See http://en.wikipedia.org/wiki/Publish–subscribe_pattern

http://research.microsoft.com/en-us/people/thoare
http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN
http://www.onelook.com/?w=feathering&ls=a
http://golang.org/ref/spec
http://www.wotug.org/documents.shtml
https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

	1. Original XCHAN
	2. XCHAN with Feathering Semantics
	2.1 Problem: Busses in the Wrong Direction
	2.2 Suggestion
	2.3 Feathering Semantics (Discussion)
	2.3.1 Successful immediately
	2.3.2 Unsuccessful
	2.3.3 Towards feathering
	2.3.4 Ready for next with x-unfeathered
	2.3.5 Observation

	2.4 Feathering Semantics (Summarised)
	2.5 Code example

	3. Discussion
	3.1 Feathering is “Low Level”
	3.2 Anti-Deadlock
	3.3 Run-Time Penalty
	3.4 Feathering Requires “Visible” Pre-Conditions on ALT Guards
	3.5 Feathering Adds Non-Determinism

	4. Alternative
	5. Summary
	6. Conclusion

