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Abstract.  This paper proposes a new channel type, XCHAN, for communicating 
messages between a sender and receiver. Sending on an XCHAN is asynchronous, 
with the sending process informed as to its success. XCHANs may be buffered, in 
which case a successful send means the message has got into the buffer. A 
successful send to an unbuffered XCHAN means the receiving process has the 
message. In either case, a failed send means the message has been discarded. If 
sending on an XCHAN fails, a built-in feedback channel (the x-channel, which has 
conventional channel semantics) will signal to the sender when the channel is ready 
for input (i.e., the next send will succeed). This x-channel may be used in a select 
or ALT by the sender side (only input guards are needed), so that the sender may 
passively wait for this notification whilst servicing other events. When the x-channel 
signal is taken, the sender should send as soon as possible – but it is free to send 
something other than the message originally attempted (e.g. some freshly arrived 
data). The paper compares the use of XCHAN with the use of output guards in 
select/ALT statements. XCHAN usage should follow a design pattern, which is 
also described. Since the XCHAN never blocks, its use contributes towards deadlock-
avoidance. The XCHAN offers one solution to the problem of overflow handling 
associated with a fast producer and slow consumer in message passing systems. The 
claim is that availability of XCHANs for channel based systems gives the designer 
and programmer another means to simplify and increase quality. 
 
Keywords. Channels, synchronous, asynchronous, buffers, overflow, flow control, 
CSP. 

Introduction 

With the advent of the Go programming language [1], channel communication based on the 
CSP paradigm [2] again seems to have a potential to becoming mainstream. A previous 
attempt was with the occam programming language [3-5], which gained significant 
industrial traction during the 1980s and early 1990s (and, of course, is still being developed 
and applied in academic research [6-8]). Whether new languages with concurrency based 
on CSP repeat this success remains to be seen. 

Nevertheless, channels come in more flavours than the simple channels of occam. This 
paper suggests a new type of channel that could be added to CSP libraries or become a new 
primitive in future versions of CSP-based languages. We call this channel an XCHAN, which 
contains a communication channel and a built-in channel-ready-channel (the x-channel) 
for flow control. An XCHAN may be sent to (asynchronously) and received from, but the 
sender must listen on the x-channel (usually in an ALT/select) when sending fails. An 
XCHAN may be buffered. 

                                                             
1 The author works with concurrent software for fire detection systems, but this "industrial paper" does not 
necessarily reflect views taken by the company. See http://www.teigfam.net/oyvind/work/work.html. 
2 A UTC Fire & Security company, see http://www.autronicafire.com. 
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The XCHAN idea came as a result of internal discussions at Autronica. As such it is still 
an idea, not having been implemented. We did this to try to merge the asynchronous and 
synchronous "camps", to arrive at a common methodology. This author believes that having 
a common tool is important, and the XCHAN is a suggestion. The author argues in this paper 
that it would work, partly based on similar thinking with EGGTIMER and REPTIMER as 
described in [9].  

1. Not All New Ideas 

Before we delve into the details, we show that the basic idea is not entirely new. The 
feedback channel is briefly mentioned in [10], page 211, in an example about buffers: 

 
"If further events are to be possible (such as a channel which can report on whether or 
not the channel is empty) …" 

However, the idea does not seem to be developed further in [10].  
The Linux/Posix operating systems have a way to handle flow control in a pipe [11]. 

There, writing to a pipe may return EAGAIN or EWOULDBLOCK as error. When there is room in 
the pipe again, a select would then return a list containing the pipe's file descriptor. 
Observe that select may contain sending and receiving roles. However, we have in the 
literature failed to see the Linux primitives comparable to CSP channels. On the contrary, 
in libcsp3 we see a CSP channel implemented on top of Posix needing two main mutexes, 
two queue mutexes and two condition variables [12]. The libcsp paper argues that adding 
this on top of Posix was done “because the CSP approach is compositional, unlike the 
Posix Threads approach, allowing much clearer reasoning about program behaviour”.  

Also, observe that a Linux pipe is a byte-wise "data stream" and does not constitute 
"message passing". Bytes of messages are concatenated in the pipe. This implies that a 
receiver could read past a message, causing any percentage of a message to be seen. A 
channel delivers full messages and nothing more.  

We will not address pipes any further. 
Languages that do have select with input and output guards may be able to handle the 

situation with less “bricks” than for ALT/select with only inputs allowed. This is not a side 
effect, but by design. We will come back to this, and see proper examples with Go, in the 
Appendix.  

Observe that the XCHAN takes the semantics further than mere “testing for readiness”, 
seen in several existing channel implementations. Testing implies busy polling. The x-
channel delivers its information (that the XCHAN is ready) on a channel proper and the 
sender process does not need to poll. 

2. The Problems 

We show two problems. The first is to make proper application between a fast producer and 
a slow consumer, where the application must have full control of the overflow situation. 
The second is the continuous search for simpler software patterns that guarantee deadlock 
freedom.  

                                                             
3 libcsp has later been expanded to libcsp2 by Bernhard H.C. Sputh. 



 Øyvind Teig / XCHANs: Notes on a New Channel Type 157 

3. Buffering (or not) 

In this section, we discuss: 

1. buffering on-the-way: 
a. after send-and-forget (asynchronous only, no flow control) 
b. inside a buffered channel (asynchronous until full, then blocking)  

2. buffering inside a process (task, thread, …) combined with: 
a. no buffering on-the-way with zero-buffered channel 

(blocking synchronous, communication by synchronisation)  
b. buffering on-the-way, see bullets 1a or 1b above  

3. no explicit buffering at all (with zero-buffered channels) 

as distinct matters. A software mechanism that connects a fast producer (that we are not 
able to control) to a slow consumer may be implemented by buffering in a process, 
buffering on-the-way or a combination. 

This author’s industrial life experience is to add (data-less or programmed data loss) 
asynchronicity (bullets 1 or 2) when needed (most probably at the interface with the 
external systems) and full synchronicity (3) elsewhere (most probably inside a system). The 
author has, as a corollary, tried to avoid strict synchronicity at the edges and avoid 
asynchronicity inside. 

For all cases, we would think of buffering as storing individual messages of dynamic 
lengths.  

Pipes containing both full and parts of messages in the same byte stream (as we have 
said) are not treated. Therefore, building parsers that pick out the next message from a byte 
stream is also not discussed. Also, we do not consider physical buffering by bit streams 
propagating in a cable, where about one kilometer of a one Gbit/s stream contains some 625 
bytes4. 

Observe that buffering is no guarantee for deadlock freedom. And a system built by 
non-buffered CSP type channels (3) may be designed deadlock free. 

And on-the-way (1) is no panacea for high speed. A system built by non-buffered CSP 
type channels (3) may also be fast. Blocking on a channel when the channel is not ready 
may be just as good a paradigm as continuing doing the next thing after any send. It 
depends. 

This paper adds 1c and 2c: 
 

1. buffering on-the-way: 
c. inside a buffered XCHAN (asynchronous until full, then wait for ready)  

2. buffering inside a process (task, thread, …) combined with 
c. no buffering on-the-way with zero-buffered XCHAN 

(ready synchronous or wait for ready)  

3.1 Why Not Buffer (on-the-way)? 

Asynchronous buffered communication between processes has been judged by some to be 
conceptually worse than synchronous non-buffered communication. Buffer and heap 
overflow handling have often caused run-time system exceptions and, therefore, the unsafe 
possibility of not knowing how much was really needed before it was too late. Buffering 
may also add memory moves: from one move (process-to-process context) for the 
synchronous case to two moves (into and out of buffer) for the asynchronous case. 
                                                             
4 Electricty moves 20-23 cm per nanosecond in an electric conductor. 
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In a buffered system with send-and-forget without flow control, combined with a 
common message pool where several clients may request services from a server, there is 
additional complexity. In such a system, all messages would arrive in a common message 
queue. A session initiated by one client does not stop others from also trying to initiate their 
sessions. This may cause the server to have to store messages from other clients and, later 
on, process those messages when the original session ends. The server has to schedule its 
own jobs, based on the messages set aside, and “becomes its own scheduler”. This again 
causes increased coupling between the clients and the server, since the agreements being 
made easily cause unnecessary knowledge about the internal coding of the other part. 

3.2 Why Buffer (on-the-way)? 

However, there may be reasons to have buffering. Examples could be: 
 

• At terminal points, where speed of incoming data needs to be related to available 
memory and processing capacity. The terminal-side process in this case often is called a 
"driver".  

• When a process writes to a file and wants to be decoupled from mechanical disk 
handling time. 

• If context switches are expensive and one cannot afford the extra cycles that 
synchronous communication may cause. (However, if there is mostly one receive for 
each send, this collapses to the same amount of switching.) 

Some of these reasons may be more or less in scope: 
 

• When the communication libraries only offer buffered communication and this is the 
only option. Sometimes one does not have the choice. 

• When tradition is rooted in asynchronous design. An example could be between 
communicating state machines, often implemented with asynchronous coupling. 
Basically, since a set of communicating state machines each only draws the next step 
from the set of global steps, it does not matter if a process state machine does not block 
on an outgoing transition when it in any case has to wait for the next incoming event 
that would cause the next transition. Therefore a set of communicating state machines 
may be realised with either asynchronous or synchronous coupling [13]. 

This paper suggests that making asynchronous communication almost as easy to use as 
send-and-forget pretends to be, and blocking equally easy - for the added benefit of full 
application process control and no busy polling, by using XCHAN with an integrated flow 
control feedback channel - may be a step forward in the art of concurrent programming. We 
will now go into some more detail. 

3.3 Send-and-forget 

Send-and-forget is a term where a process performs a send call, and the call returns 
immediately. In some systems there is a return value indicating whether there was room in 
the buffer. 

One could also send-and-forget on a synchronous channel with no buffering in the 
channel, provided one knows that it would not block, that is the receiver is always ready. 
Attempting to send on a synchronous channel into a finite set of chained processes should 
only be done if there is some kind of feedback in the chain. This is done with one extra 
backwards channel for flow control ("c5" in Figure 1). The processes that ALT on this 
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"ready channel" will also contain the input channel in that ALT. Overflow handling is 
handled by the application, but there is no need for any busy poll timeout to retest. When 
there is space, the ready channel will inform. 

In both cases the capacity of the buffer or the number of chained processes cannot be 
infinite. This asynchronous communication must sooner or later relate to overflow. 

There are two ways to think about this, using some pattern to handle overflow or 
setting the capacity to "large enough". 

If overflow, attempting to send into a buffer will then either cause the application 
process to drop that message (and hopefully send information about this when the buffer 
has space), or retry according to some scheme. Often a timer will do this active retry. 

Many systems are designed such that all processes always do send-and-forget, with no 
channel concept. The fact that “the world is asynchronous” is believed to also mean that all 
the processes must therefore communicate asynchronously, instead of limiting 
asynchronicity to where it is needed, like at an interface with “the world”. In those systems 
it seems inconvenient to handle a “full buffer” return, simply because one would not really 
know what to do with it (since any such overflow seems just as serious as any other). So, 
one tries to make sure that the buffer capacity is “large enough”, and the buffer system will 
then just crash and restart the system if it overflows.  

Finding “large enough” is easier for a channel realised as a point-to-point pipe than 
for a common buffer pool. Many concurrent systems are designed with the latter. Using a 
metaphor: when more cars arrive on a bridge than the bridge is designed for, it collapses 
and all cars fall into the river. A millisecond after, the bridge has been rebuilt (the 
microcontroller has restarted), but the cars and people in them have been lost. Observe that 
there are no lights controlling the access to the bridge, and there are several roads 
connected to the bridge. Even worse, each car does not see the bridge and how crowded it 
may be, only an always-open (also when full) gate to it.  

In a small system, memory for the pool is often limited. One would not initiate the 
buffer pool with 1000 elements when one thinks that only 13 are needed. One would set it 
with some margin, to f.ex. 15. But should the 16th message arrive, it will collapse by design. 
This practice should be approved by agencies if one can prove or verify that the 16th 
message indeed never arrives. Arguing should not be enough. 

At this point we do not discuss the low "Office Mapping Factor" that often comes with 
send-and-forget. A programmer must, at application level, often know more about the other 
processes' internal doings than what might be inferred from the protocol between them. 
This is much discussed in an earlier paper [14] as well as in a myriad of papers for these 
WoTUG/CPA conferences. 

3.4 Sending on a Synchronized Unbuffered Channel 

This is the basic mechanism in CSP-based systems. The first process that is trying to 
perform an operation on the channel will be descheduled, and only rescheduled when the 
second process arrives and the communication is completed and data moved. The sender or 
receiver may be first. Observe that a channel here most often is unidirectional and point-to-
point. Data is copied from the sender's context directly to the receiver's context. There is no 
intermediate buffer. In order to handle buffering and overflow, extra processes to manage 
this have to be added. 

3.5 Selective Choice 

Classical occam does not allow channel output guards in the ALT statement, only input 
guards, timeouts and SKIP (a guard that is always ready, like an else). Input guards 
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become ready when there is a sender at the other end. Output guards (which CSP allows) 
become ready when there is a receiver at the other end. An ALT will block if none of its 
guards are ready. 

We have mentioned that there are similarities between sending on an XCHAN / waiting 
for x-channel and sending on a channel in an ALT. This section will try to outline some 
basic differences. 

The XCHAN will differ from an output guard (we call it ALTOUTPUT) in several 
aspects. We have not differentiated between systems that may mix input and output guards 
in an ALT, and those that in addition have pre-conditions5 on guards. 

1. The XCHAN asynchronous send will never block (but it may discard data). The 
ALTOUTPUT will block (with no data loss) if channel cannot take it and no other 
guard is ready. 

2. The application will always be informed if an XCHAN would have blocked, per 
channel. The application will be explicitly informed about a blocked ALTOUTPUT 
only if the ALT contains an else (SKIP) as the only other component. If more 
components are in the ALT, then the application will only know that all of the 
components are blocked, including the channel in mind. When one is taken, we will 
not know if any other component could have been taken. 

3. Since XCHAN offers this explicit a priori “overflow” information and ALTOUTPUT 
offers this non-explicitly (as part of the ALT set of guards), the next sending attempt 
of an ALTOUTPUT has to be part of an ALT, while no next attempt is needed for the 
XCHAN. The sender passively waits in an ALT for the x-channel and can service other 
events (e.g. the arrival of fresh data).  

4. When sending on the XCHAN is not taken, the sender side commits to send when x-
channel arrives, but it does not commit to what to send. This commitment may live 
through several ALT setups6. The ALTOUTPUT is “new” each time the ALT is entered. 

5. This XCHAN commitment survives the attempted sending and is seen by the receiver 
when it arrives. This commitment is a state of the channel (in the same way as the 
presence of a process wanting to use the channel is a state). The ALTOUTPUT has no 
such “colouring” . 

The above suggests that the ALTOUTPUT at worst offers a posteriori (“second order”) 
indication that a particular channel is not able to communicate. The XCHAN offers a priori 
(“first order”) indication.  

However, this paper is not much concerned about XCHAN versus ALTOUTPUT, since 
XCHAN allows similar functionality to ALTOUTPUT without having to support both input 
and output guards. Secondly, we have not looked at the link level protocols needed to 
implement XCHAN and ALTOUTPUT safely and efficiently, in shared memory or 
distributed memory cores. Thirdly, we have not made any formal models for the two to try 
to see if the differences discussed above would, after all, collapse. After the reasoning we 
have done here, we would be surprised should this be found. Fourth, we have not discussed 
failure modes and recovery. However, all these factors could be interesting for further 
investigation. 
                                                             
5 The pre-condition is a run-time evaluated expression (yielding a boolean) that may be attached to a guard in 
an ALT. If the pre-condition is false, the guard is ignored in that execution of the ALT. This enables run-time 
control over which events are considered. 
6 As mentioned in the Introduction, this is the same logic as seen with the EGGTIMER and REPTIMER 
primitives as described in [9] 
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Observe that Go allows both input and output guards in select, but does not have 
pre-conditions. The Appendix shows how Go may use its channels with a select 
statement mixing input and output to facilitate some of the functionality of XCHAN. This is 
also discussed there. 

4. Link Level and Application Level 

Application processes communicate according to protocols designed by the system designer 
/ programmer at the application level. 

The method that the operating or run-time system uses to transfer data between 
processes represents the link level. If only asynchronous send-and-forget is available, then 
synchronisation is done by adding flow control return messages. If only synchronous 
channels are available, then buffering is added (as we have seen) by chaining processes, or 
internally in a process by, for example, a ring buffer. Or the channel itself may be buffered. 

“Architectural leak” from link to application level could be seen as application code 
that is added to compensate for missing features at link level. Chained processes and 
overflow buffers are needed when buffered channels are not supplied. Busy polling is 
needed if the link level does not deliver appropriate flow control. The channel-ready-
channel connected to a buffered channel, described in this paper as x-channel, would 
decrease architectural leakage. 

A standard occam CHAN does know whether the receiving end is blocked or ready. If 
the sender sees no receiver “first” on the channel, then the traditional solution is to 
deschedule (i.e., block) and itself become first. The channel contains this information, but 
this is not handed over to the application. XCHAN, in a sense, moves this information up into 
the application in much the same way as an output guard. 

Some words need to be said about the source of the x-channel being from the run-time 
system. We have compared this to the source of a timeout channel, which often is also from 
the run-time system - even if may be a system-timer process proper. The system clock 
constitutes a single source for all the timeout messages. The x-channel is more complex, as 
each XCHAN would have one each. If we implemented this as a pattern, then we would have 
no means to “send on a channel from a channel”, corresponding to sending on x-channel 
“from” XCHAN. Due to layering and the fact that we suggest XCHAN as a primitive type, the 
source then cannot and should not be from application level. 

5. Examples 

Correct use of a buffered channel with x-channel may be considered a programming 
pattern. We will call this the "XCHAN pattern". If the link level part of it is handled by the 
run-time scheduler, then the pattern would cover the application part only (perhaps verified 
by the compiler). 

5.1 A Channel-Ready-Channel in Traditional occam 

An “intelligent buffer” could be a composite process that takes input on one channel and 
sends out on another. It could potentially receive more than it can send, filling up an 
internal buffer that eventually could overflow. Since we do not have output guards, it must 
be prompted for output by an additional process. This is a classical occam idiom. 
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Figure 1. Example of an overflow buffer (OBUF) 
 
The figure is rewritten from an earlier paper [15]. The composite overflow buffer 

OBUF consists of BUF and OUT. The channel-ready-channel between OUT and BUF is 
c5, and it must be ALTed with c2 in BUF. This pattern has been used extensively in occam. 
BUF knows when sending on c4 that it will not block. What we see here is in fact a 
buffered channel from c2 to c6 with minimum capacity 2. A ring buffer could be added in 
BUF, and overflow handled by throwing away messages and inserting an overflow message 
in the buffer, so that it may be seen by the receiving end. 

5.2 Local ChanSched ANSI C with Channel-Ready-Channel 

This section shows how buffered channels with bundled channel-ready-channel could be 
used, provided the concept was added to the “ChanSched” system described in an earlier 
paper [9]7.  

Autronica's ChanSched is written in ANSI C. The mentioned paper shows how 
rescheduling points are inserted by a tool that builds an invisible jump table. In Listing 1 
there is only one synchronisation point: line 05. Lines starting with three dots are "token 
based" folds containing code, not shown here. 

 

Figure 2. Buffered XCHAN, as shown in Listing 1 (below) 
 

Listing 1 (below) shows the main structural part of process S in Figure 2. Listing 1 
shows ANSI C code with upper case macros, where italic macros like ALT()are channel 
handling macros. There is one buffered channel, XCHAN_DATA_OUT, and there is one 
channel-ready-channel, XCHAN_READY. The latter is provided by the run-time scheduler, like 
the structures needed to support timer channels. Therefore it is drawn as coming from the 
buffered channel itself. This maps quite well with how these channels would be perceived. 

                                                             
7 The style in this document is as if it would still exist.  
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Most of the time the process will hang on the ALT (line 05). When one of the ALT 
components has been taken, ThisChannelId is delivered to the 2-case switch statement. 

The basic idea here is that this process would be used as some kind of server or driver, 
which may receive messages faster than it can get rid of them, but when there is an 
overflow situation it may still receive on its XCHAN_DATA_IN input, and not have to revert to 
busy polling to catch up when the output channel would again become ready for input. 

Observe line numbers 09 and 16, where XCHAN_OUT is used, sending on a buffered 
channel. These calls can never block, meaning that the next lines in all situations are 
returned to. If there was no room for the message, CP->Sent_Out will become FALSE. 
When the process again enters the ALT, new messages may arrive any time and be treated in 
the overflow code in line 13. When the output channel is ready again, line 09 is entered, 
and it again sends over the buffered channel XCHAN_DATA_OUT. 

01 while (TRUE) { 
02   ALT(); 
03     ALT_SIGNAL_CHAN_IN (XCHAN_READY);  // data-less 
04     ALT_CHAN_IN (CHAN_DATA_IN, Value); 
05?  ALT_END(); // Delivers ThisChannelId: 
06 
07   switch (ThisChannelId) { 
08     case XCHAN_READY: {    // sending will succeed 
09!      CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value); 
10     } break; 
11     case CHAN_DATA_IN: { 
12       if (!CP->Sent_Out) { 
13         ...  handle overflow (decide what value(s) to discard) 
14       } 
15       else {      // sending may succeed: 
16!        CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value);  
17       } 
18     } break; 
19     _DEFAULT_EXIT_VAL (ThisChannelId) 
20   } 
21 } 

Listing 1. Overflow handling and output to buffered channels (ANSI C and macros) 

6. Zero Buffering 

With no buffer in the channel, the buffer needs to be moved inside the process S. When 
overflow occurs, the process now is able to also manipulate the buffer completely - remove 
the oldest, newest or perhaps flush all in the buffer. This is of course more versatile than a 
FIFO-buffered channel. 

Figure 3. Zero buffered XCHAN 
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According to the XCHAN pattern, if S has tried to send on out and failed, when x-
channel arrives, something has to be sent – either the last value or an overflow message. 
This is because at this time the receiver is not rescheduled before S has done this second 
sending. Even if it was receiving inside an ALT, it is blocked like it would have been 
sending. This property also goes for a buffered XCHAN.  

This zero-buffered XCHAN would add a semantic asymmetry to sending and receiving 
on a synchronous channel. An asymmetry is already present for an ALT, since when the ALT 
is taken by one of its components all the other components have their “first”-attribute 
removed. At the XCHAN sender side a “first”-colouring is not removed since this is the 
commitment that we have already mentioned. 

7. XCHAN breaks Deadlocking Cycle 

Since an XCHAN does not block if the XCHAN pattern is used correctly, the XCHAN has the 
property that it may break a deadlocking cycle. We argue that this also is a quality 
enhancement feature. 

As an example we describe an XCHAN and a CHAN connected in each direction between 
two processes. We have documented a deadlock free pattern in [15], later called “knock-
come” and described and formally verified with Promela and Spin in the blog note [16]. 

  

 
 

Figure 4. Traditional "knock-come" pattern 
  
In Figure 4, we see the traditional “knock-come” pattern that we have used 

extensively. S and C may both send spontaneously to each other. This is a change from the 
other examples here, where C is not sending to S. S sends “msg” without permission since 
it is the Master. But the C Slave has to “knock” first with a non-blocking asynchronous 
signal on a signal channel. When S decides, it answers with “come” and waits atomically 
for “data” from C. When C receives “come”, it has to immediately send “data”. This pattern 
is deadlock free. 

 

 
Figure 5. Same pattern with XCHAN  



 Øyvind Teig / XCHANs: Notes on a New Channel Type 165 

With XCHAN, we see that we could remove the “knock” asynchronous data-less 
channel and instead connect an XCHAN from S to C. C can send “data” any time it needs, and 
since S never deadlocks on XCHAN output, it will always be able to receive. If S should send 
on XCHAN at the same time, it will not block but go on to pick up any colliding “data”. If 
“msg” fails, S will wait in an ALT for new data on in and the x-channel (“come”). If during 
this waiting a new message arrives from P, then S could decide to instead send this.  

We have removed the “Master” and “Slave” role names when the XCHAN is used, as we 
have failed to find good names for these roles. The reason is that the run-time system (or 
the “channel itself”) now has an additional third role. 

8. Syntax Suggestion 

Here is a rather speculative suggestion of how some languages may have the new channel 
primitive declared. No surprise now, we have simply prefixed 'X' to the already existing 
CHAN/chan primitives. Promela [17] and XC [18] are also shown.  

(occam: also added optional capacity) 
XCHAN (100) OF BYTE my_xchan: 

(XC: also added optional capacity) 
[100] xchan my_xchan; 

 (Promela: has select with outputs) 
xchan my_xchan = [100] of byte 

(Go : has select with outputs) 
my_xchan := make (xchan byte, 100) 

Input or ALT-ing on the channel-ready-channel could be done by some using standard type 
of attribute to the channel, like "x.my_xchan".  

A compiler would have to know the XCHAN software pattern and verify that the 
implementation is correct. Describing the usage rules for this is beyond the scope of this 
paper. 

9. Some More XCHAN Semantics 

The operations possible on both CHAN and XCHAN would be to send or read from them. 
However, the XCHAN has one additional operation: to wait for it (i.e., its x-channel) after 
failed sending. 

Extending the operation set of the XCHAN could be of use, especially on multiprocessor 
systems where dynamically created channels could be closed. So, with XCHAN in place, we 
could perhaps include some more operations on the buffered channel, like close, flush, 
return with percentage full, signal not-full buffer when one read (space for one) or all read 
(empty). 

However, we would be reluctant to add much more than necessary to the XCHAN. This 
would perhaps also be closer to the spirit of the original CSP design. A discussion of this 
would be outside the scope of this paper. We have also shown that a zero-buffered XCHAN 
would need the buffer to move inside a process for full control by the application. 
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As mentioned, note that there is a requirement to write to the channel if the x-channel 
is signaled8. This is part of the XCHAN pattern. It is outlined in Listing 1. If this is not done, 
the commitment colouring of the XCHAN is not ended, potentially leading to deadlock if the 
receiver blocks indefinitively. 

Observe that it may not be possible to model a “full XCHAN” with standard occam code. 
We have seen that the buffered case may be built with a composite process, but we would 
need to also mimic a fire-and-forget channel for the x-channel (which is possible with yet 
another buffer process). However, the unbuffered XCHAN looks difficult for occam code, as 
any intermediate process tends to introduce buffering, and a standard zero-buffered occam 
channel introduces blocking (and an XCHAN needs asynchronous sends). 

The XCHAN buffers could be statically allocated in systems where dynamic memory 
handling is not allowed, and the data is carried over protocols known at compile-time. This 
could be the case for safety-critical systems. 

Observe that a classical9 CSP channel has no associated scheduling queue; so 
reasoning about the scheduling and timing properties is easier than if the sending processes 
had to be queued. (Any buffer could of course be considered a data queue.) This timing 
property concern may be exemplified with the Ada Ravenscar profile for high integrity 
systems, which is “a subset of the Ada tasking features designed for safety-critical hard 
real-time computing” [19]. In the Ada rendezvous, it is not easy to analyse which processes 
are queued, so the Ravenscar profile prohibits use of rendezvous – since access to them is 
based on scheduling queues. To try to rectify, the Ada Ravenscar profile has been extended 
with a CSP library that provides channels the Ravenscar legal “protected objects” [20]. The 
paper argues that: 

 
“The advantage of these Ravenscar channels is transforming the data-oriented 
asynchronous tasking model of Ravenscar into the cleaner message-passing 
synchronous model of CSP. Thus, formal proofs and techniques for model-
checking CSP specifications can be applied to Ravenscar programs. In turn, this 
increases confidence in these programs and their reliability.” 10 

Also observe that a Go channel has a queue of senders and a queue of receivers. Further 
information is given in the Appendix. 

10. Discussion 

The asynchronous sends on XCHANs break the blocking semantics of CSP. Should such a 
send fail, we have introduced the always present channel-ready-channel (x-channel) to 
compensate. 

Is this XCHAN too easy to program at the application level, so that there is no need to 
bother implementing and offering in a programming interface or turn into a proper citizen 
of a language? We do not think so.  

Remember, there is a history here of the asynchronous and (read versus) synchronous 
camps. The “send-and-forget” metaphor is transformed into a “send-and-forget until ready 
if not sent, then send what you have” metaphor. Since there is no such thing as infinite 

                                                             
8 We think it is possible to implement not having to send after the x-channel signal, but this feels much more 
complex, as the run-time system would probably need to do agressive state cleanup and rescheduling and 
even require some application coding in the receiver. The latter would lead to architecture leakage. 
9 As opposed to Ada rendezvous and Go channels (see Appendix) 
10 This CSP library is rather limited, as it does not contain any ALT implementation. 
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buffering, and finding “enough buffer size” is a rather risky business [21], we have argued 
that having an XCHAN would enhance quality. 

We do not see that different process priorities between the ends of an XCHAN should 
add complexity as compared to standard CSP channels. 

The XCHAN discussed in this paper does not introduce the same “asynchronous tasking 
model” as in the Ravenscar Ada, where Ada rendezvous are gone. It merely adds asynchro-
nous messaging as a first class citizen of CSP based systems. 

11. Conclusion 

We have tried to argue that an XCHAN-type CSP based channel described here may become 
useful in both the asynchronous and the synchronous communication camps. We have also 
tried to show that XCHAN could enhance the quality of many concurrent systems, by adding 
a new means to handle application overflow control as well as a new channel type that will 
assist in breaking deadlock cycles. 
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Appendix: Mixing Input and Output in the Go select Statement 

Figure 6. Go example (right channel capacity irrelevant) 

This Go example uses blocking select (with no default case) with one output and one 
input. Go “simulates” a guard if a communication component is nil, so when not valid 
(line 08-09) only the input line 15 would ever execute. Line 12 will always listen (?) on the 
channel, while line 15 then may send (if not nil). In the receive statement of lines 12 we 
have dropped an optional second parameter, so we assume the channel does not become 
closed. 

 
01 func Server (in <-chan int, out chan<- int) { 
02     value := 0     // Declaration and assignment 
03     valid := false // --“-- 
04     for { 
05         outc := out // Always use a copy of "out" 
06         // If we have no value, then don't attempt 
07         // to send it on the out channel: 
08         if !valid { 
09                 outc = nil // Makes input alone in select 
10         } 
11         select { 
12?            case value = <-in: // RECEIVE? 
13                 // "Overflow" if valid is already true. 
14                 valid = true 
15!            case outc <- value: // SEND? 
16                 valid = false 
17         } 
18     } 
19 } 

Listing 2. Managing without xchan in Go with goroutines 

Thanks to the golang-nuts user group for this code [22], as well as for the following code. 
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Another way to do some of this is to take the buffering in the channel at face value: 
 

01 func (ch Leaky) Send(value int) { 
02     for { 
03         select { 
04             case ch <- value: 
05                 return // sent! 
06             case <- ch: // No sending above, read(!) an element.. 
07                 // .. and discard (no code here) 
08         } 
09     } 
10 } 
11 
12 func (ch Leaky) Receive(value int) { 
12    return <- ch 
13 } 

Listing 3. Managing without xchan in Go, implemented with a type 

This code implements a leaky channel. The code will lose a value when the channel blocks. 
Line 06 in fact listens on the output end of the channel. This channel is now full and line 06 
picks out the oldest element. This code does not listen for new input while the buffer is full, 
but it could be coded. 

Observe that each Go channel has a queue of receivers and senders. Therefore Go in 
the future might need a safety critical profile subset. How this would look (except perhaps 
take "advantage" of the fact that there are no parallel usage rules in Go), is beyond the 
scope of this appendix. 

Are the reasons we have given for xchan interesting if this particular problem may be 
solved with a "full" select with mixed input and output statements? Will an xchan in any 
way influence how Go programmers think? To try to answer this is also beyond scope for 
this appendix. We certainly think this is interesting. 


