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Abstract.  This case observation describes how an embedded industrial software 
architecture was “mapped” onto an office layout. It describes a particular type of 
program architecture that does this mapping rather well. The more a programmer 
knows what to do, and so may withdraw to his office and do it, the higher the 
cohesion or completeness. The less s/he has to know about what is going on in other 
offices, the lower the coupling or disturbance. The project, which made us aware of 
this, was an embedded system built on the well-known process data-flow 
architecture. All interprocess communication that carried data was on synchronous, 
blocking channels. In this programming paradigm, it is possible for a process to 
refuse to “listen” on a channel while it is busy doing other things. We think that this 
in a way corresponds to closing the door to an office. When another process needs to 
communicate with such a process, it will simply be blocked (and descheduled). No 
queuing is done. The process, or the programmer, need not worry about holding up 
others. The net result seems to be good isolation of work and easier implementation. 
The isolation also enables faster pinpointing of where an error may be and, hence, in 
fixing the error in one place only. Even before the product was shipped, it was 
possible to keep the system with close to zero known errors. The paradigm described 
here has become a valuable tool in our toolbox. However, when this paradigm is 
used, one must also pay attention should complexity start to grow beyond 
expectations, as it may be a sign of too high cohesion or too little coupling.  
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Introduction 

The system we are describing here has been discussed in two published papers [1-2]. It was 
a rather small project with up to four programmers, running for some time. The result was 
several hundred KB of fully optimized code in an 8-bit microcontroller. The product we 
discuss has high commercial value for our company. It is part of a new fire detection panel, 
with one such unit per cabled loop. A loop contains addressable units, for fire detection and 
other inputs or outputs. (Autronica pioneered “addressable fire detectors” in the late 
seventies.) Together with fire detectors and fire panels it completes Autronica Fire and 
Security’s range of products. The product described here is called AutroLooper and is not 
available as a separate product. 

Several AutroLoopers communicate (over a text based protocol) with a “main” 
processor on the board. The team, which developed that system partly, used object 
orientation, UML and automatic code generation. The degree of “office mapping factor” in 
that system is not discussed here. 
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Working in industry on rather small projects, we seem to get on with the next project 
as fast as possible when one project has been properly tested, documented and then 
“closed”. This paper is meant as a reflection over an observation, squeezed into a glitch 
between the project proper and its follow-up, a linear expansion of the product we describe 
here.  

This case study tries to list and explain our experience. We have not done any 
comparative study or discussed what we could have done differently. There are no metrics 
involved in this industrial “case observation”.  

Observe that in this document we often refer to what “we” did and how “our” 
implementation is. Please see [1-2] for all these cases. 

In this document, a process is what some embedded real-time systems mostly consist 
of, closely related to the thread and task terms. 

1. The Office Mapping Factor 

By office mapping factor we mean the degree to which a program architecture may be 
mapped to separate offices for individual programmers to implement, and the degree to 
which that implementation work is complete (high cohesion) and undisturbed (low 
coupling). We assume that module properties like high cohesion and low coupling cause 
high office mapping factor, and that high office factor is wanted.  

Prior to the mapping to offices, the program architecture would have gone through a 
partitioning phase mostly based on functional decomposition. We believe that high office 
mapping factor gives high satisfaction in the office, as the programmer knows what he 
should do, and does not have to think about how the others do their parts.  

 

Figure 1. Software architecture and office floor plan 
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The architecture we built (glimpsed in Figure 1) was, to a large extent, a consequence 
of informal meetings around a whiteboard, and an understanding of the semantics of our 
processes and channels (pictures of those whiteboards are our minutes). This way the 
architecture itself reflected each team member’s speciality. Management had picked people 
with some, but not much overlap in knowledge. We believe that this contributed to a higher 
office mapping factor. Not only beneficial for development, we also think that as time 
passes and maintenance needs to be done, getting different people on the project will be 
easier with this high office mapping factor. 

Office mapping could also allow that one programmer does more than one process. It 
would mean that he would mostly need to relate to the communication pattern between his 
own processes. Role wise he would first do his one job, exit the office and enter it again for 
another. And mostly forget about the internals of his finished work only to concentrate on 
the present. 

2. High Cohesion and Low Coupling and the Office 

In the context of a confined office, having high cohesion means that the programmer knows 
what to do and is able to fulfil the task having little communication or coupling with the 
others in the team. He would not need to know how the others solve their processes.  

Cohesion and coupling in this case seem to be inversely related. The less complex the 
protocols between the processes are, the more complete is a process’ work. 

However, the programmer must understand that the protocol or contract must be 
adhered to 100%, and he must know that he cannot “cheat” by sharing state with the other 
processes – other than by concrete communication. Going by the agreed-upon cross-office 
rules (the protocol message contents and sequence semantics) also gives a concerted 
feeling: one is part of a real team.  

But, is this not is how programming has been done since the fifties? For procedural 
programming languages a function has always taken parameters and returned values. A 
function has had high cohesion, and coupling has been through the parameters. However, 
concurrent constructs (or even Object Oriented constructs) may in some cases be at stake 
with the cohesion and coupling matters. Processes may be implemented more or less as 

black boxes and may have subtle communication patterns. The lesson learned with occam 
[3] in the eighties and nineties was that the clean process and communication model was 

worth building on. This is what we did in this product. occam (without pragmas) ensured 
complete “black-box” encapsulation.  

3. Process Encapsulation Check List and the Office Mapping Factor 

A check list for process encapsulation might be like this (below). One could say that “wear” 
of the office mapping factor may be caused by: 

 
1. For a process, not being able to control when it is going to be used by the other 

processes. Serving “in between” or putting calls in a local queue makes it much 
more complicated to have “quality cohesion”. [Java classes, for example, cannot 
prevent their methods being called (except, through ‘synchronized’, where other 
synchronized methods can't run if one is already running). But that does not 
prevent the method from happening. It just delays it. It cannot be stopped, even if 
the object is not in a position to service it (like a "get" on an empty buffer). Not 
being able to control when it may be used by other processes means that things of 
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importance to a process may change without it being aware of it. This trait is 
further discussed here, since the other points (below) only to a small degree are 
valid in our project.]  

2. Incorrect or forgotten use of protection for inter-process communication. [So, use 
a safe pattern for it – as we have used in this project. ] 

3. Communication buffer overflows would most often cause system crashes. [We 
use synchronous channels, which cannot cause buffer overflow during inter-
process communication. However, buffer overflows on external I/O are handled 
particularly by link level protocols.] 

4. Mixing objects and processes in most languages and operating systems, since 
most languages have been designed to allow several types of patterns to be 
implemented. [We use the process definition from a proprietary run-time system 
which gives us occam-like processes and intercommunication in ANSI C.] 

5. Too much inheritance in OO. There is a well documented tension between 
inheritance and encapsulation, since a subclass is exposed to the details of its 
parent’s implementation. This has been called “white-box” encapsulation [4]. 
This is especially interesting here, if a process is an instance of an object. 

6. Aliasing of variables or objects. Aliasing is to have more than one name on the 
same memory cell simultaneously. This type of behaviour is required in doubly 
linked lists, but would cause subtle errors found well into the product’s life cycle. 
[We don’t think we have these.] 

7. Tuning with many priorities. Priority inversion may soon happen. How to get out 
of a potential priority inversion state may be handled by the operating system. 
However, many smaller systems do not have this facility. Therefore design with 
many priorities is difficult to prove not to have errors. [We have medium priority 
for all Processes (scheduling of them is paused when the run queue is empty), low 
for Drivers (called when ready queue is empty), and high priority for all 
interrupts (which never cause any rescheduling directly). This is a scheme, which 
holds for the rather low load that our non pre-emptive system needs to handle.] 

8. Not daring to do assert programming and instead leave unforeseen states 
unhandled or incorrectly handled. System crashes by assert programming puts the 
pain up front, hopefully before any real damage is done. However, it also removes 
subtle errors at the end. [We have used a globally removable macro for most 
asserts, and we have hundreds of them. Overall, they seem to cause so little 
overhead and such high comfort that we have not felt it correct to remove them. 
This author thinks of them as self-repairing genes of our “software cell”: on each 
iteration with the programmer, the cell enters longer and longer life cycles.] 

4. Mapping 

The mapping of the processes was easily done, since the team members in our case had 
their specialities. After all, that is why management had co-located us in the new facilities 
with subunits of 6-and-6 offices around small squares (Fig.1).  

The application proper was handled by two persons, the intricacies of the loop protocol 
by a third and the internal data store and high level text protocol by a fourth. And 
importantly, the fifth – a proper working project leader. One of the five also had respons-

ibility for the architecture (this author). His experience (of which much was with occam 
and the SPoC implementation [5]) projected, of course, that way of thinking on the 
architecture. This was much discussed in the team prior to the decision, but with the some 
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20 years of average embedded real-time experience for the rest of the team, the concepts 
were soon understood and accepted. Even, with some enthusiasm. 

With the mapping of processes to offices (in most respects here, “office” really means 
“person”), we had a parallel architecture that also enabled parallel development. We think 
this shortened development time – the higher the office factor, the greater the shortening.  

5. The Closed Door Metaphor 

The first point in the numbered list above mentions “not being able to control when it is 
going to be used by the other processes” as a potential problem for the office mapping 
factor. 

With the mapping scheme, terms from computer science become metaphors for office 
layout or human behaviour. Below, when a door is mentioned, it both means the physical 
door to the office, a person’s possibility to be able to work undisturbed for some time, and 
that an embedded process is able to complete its work before it goes on to handle other 
requests. It is, as one can see in this paper, difficult not to anthropomorphise the behaviour 
of the computer.  

When we talk about being undisturbed, we mean both undisturbed programmers and 
processes. Low cohesion means a good protocol between processes and a corresponding 
small need to discuss further with the other team members, because it is all in the protocol 
description. 

Below, we outline three important facets, which in our opinion, may influence the 
office mapping factor: sloping, non-sloping and sender-side sloping message sequence 
diagrams. These terms are probably invented here, as eidetic tools. 

5.1 Sloping Message Sequence Diagram 

 

Figure 2. Asynchronous communication is “wide open” 

Øyvind Teig

Øyvind Teig

erratum: «coupling»
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A sloping message diagram describes a communication scheme where a process (the top 
boxes in Figure 2 show 5 of them) sends with no blocking or synchronization. This is called 
asynchronous communication. Here sending takes time, meaning that the time line (the 
vertical lines, where time flows downwards) is present both for sender and receiver. Sender 
sends at a time, the run-time system buffers the message, and the receiver receives it some 
time later. The important thing here is that neither party blocks or is descheduled for the 
sake of the communication. Time flows and exists for them – to do other things as required. 

This communication scheme is much used. However, for a concurrent design it is only 
one important tool in the toolbox. If the asynchronous behaviour is wanted, it is the right 
tool. Otherwise, there may be certain advantages for not using this scheme.  

In Figure 2, P sends two orders: A (first) and K for which it needs to have confirmation 
messages D and N. The middle, left box shows that the time for P-2 to respond is either 
time B to C (“BC”) causing reply C, or BC’ causing the same data to be sent later as reply 
Cmark. Depending on whether P-2 has to have the extra CC’ time, the confirmation ordering 
back to P (of its original A then K messages) will be switched.  

Not knowing which response comes first is illustrated by the question marks (“D?”, 
“N?” or “D´?”) in the centre bottom ellipse – to indicate that the acknowledges are 
indeterminate with respect to when they arrive. 

Sometimes, the order and the confirmation must be in phase. Either it must, or it is 
simpler this way – with less internal complexity. Relying on any order of the replies could 
be equally problematic. With synchronised channel communication, we can be in charge on 
this point: we could decide to listen (and hold) any way we want.  

With the scheme above, it would be better to make the design able to handle order 
swapping. Easy: just get on with the next job in P when the number of pending replies have 
reached zero. 

But what if, instead of merely a swapped order, completely unrelated messages arrive 
from other senders?  Then, it is not so easy: the process soon becomes a scheduler for itself. 
This adds complexity, because in the deepest sense every program has to know something 
about how the other parties with which it communicates behave internally. “Can you wait a 
little in this case?” / “I will send you an extra confirmation when you may go on.” This 
kind of out-of-office conversation could be a warning sign that the next time the 
programmers enter their offices, it will take longer. And then, longer again. We do not have 
WYSIWYG semantics. 

5.2 Non-sloping Message Sequence Diagram 

Here we describe another tool in the toolbox: the synchronous blocking communication 
scheme. (Note that blocking means descheduled or set aside until the communication has 
happened. It does not mean making the processor slower or unable to do any meaningful 
work. The throughput of a synchronous system might even be higher than an asynchronous 
system, provided adequate buffering and asynchronicity is applied at the terminals.)  

In Figure 3, we see messages drawn by an offline log client that we had made for us. 
Here, each time-stamp has a complete message; it is the time of the communication. The 
“rendezvous” happens there. It is not the time when the first process on the synchronous 
one-way channel gets descheduled. (In our case, we have a non-preemptive run-to-
completion scheduler beneath.) At this point, time stops for this process. Time, of course, 
flows; but not for the descheduled process. It may only be scheduled again when the second 
process has been at the other end of the channel, and the run-time system has memcpy’d 
data across, directly from inside the state space of the sender to inside the state space of the 
receiver. 

318



 Ø. Teig / High Cohesion and Low Coupling: The Office Mapping Factor 49 

Although deadlocks may happen with synchronous systems unless safe patterns to 
avoid them are used [1-2], the synchronous communication scheme has some advantages. 

Firstly, there is no possibility of buffer overflow. 

 

Figure 3. Synchronous communication has “door” 

Secondly, and this is stressed here, the receiving process need not “listen on the 
channel” when it is active doing other work. It may communicate with other processes and 
not worry about whether there is any other process waiting on the ignored channel. Observe 
that it does not care, the process and data-flow architecture has been designed so that the 
waiting of one process does not have any consequences which the busy process need worry 
about. If, far above these processes there is a conversation going on with another processor, 
which needs a reply even if several processes are blocked further below, the design must 
have considered this1.  

Not listening on the channel is equal to having the office door shut. Building our 
system with this paradigm, we believe, has given lower coupling and higher quality 
cohesion. All communication in the system we describe here is based on this. We believe 
that this is one of the reasons why we seem to have a high office mapping factor2.  

Observe that the ALT construct makes it possible to listen to a set of channels or an 
array of channels, with or without timeout. This listening is blocking and – according to the 
door metaphor – individually closable. So, there is no busy-polling of channels (if this is 
not what we really want – at some asynchronous I/O terminal). 

 

5.3 Sender-side-sloping Message Sequence Diagram: Pipes 

It is possible to have asynchronous sending and blocking reception if we use pipes. With 
pipes there is one queue per pipe. A listener may then choose not to listen on a pipe. Most 
often a pipe may have at least one “buffer”. Some times they block when they have 
received N elements, some times they just return a “full” state. Often a pipe cannot have 
zero buffers – which would have allowed for true synchronous messaging. 

                                                           
1 In our case, it is handled with active process “role thinking”. An in-between process is a slave both “up” and 
“down” and a mix of synchronous blocking data-rich and asynchronous data-less signals is used. 
2 The run-time layer we used to facilitate this we built on top of an asynchronous system. This was considered 
(correct or not, at the time) to be the only viable way to introduce this paradigm into the then present psycho-
technological environment. 
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It is possible to build this kind of system also with a composite buffer process and 
synchronous blocking channels. We have one in our system, and it contains two small 
processes (it may be spotted in Figure 1 as P_OBuff1In and the process below it). 

A pipe construction is a versatile tool. However, using it may give a little lower office 
mapping factor. We may have to know more about the sender: “Does it block now? Should 
I treat it now? When does he send?”. And the receiver: “Is it listening now? May I be too 
eager a producer? How do I handle it if I have too much to send? Should I change state 
and go over to polled sending then?”. 

The fact that time has not stopped for the sender, after a sending, may therefore be a 
complicating factor. 

6. Scope 

The system we have described contains medium to large grained processes, which contain 
long program sequences. Whether the office mapping factor has any significance for a 
system with small state machines realised as communicating processes, we have not 
investigated.  

Also, as mentioned, we have not done any comparative studies of other paradigms, like 
OO/UML. For the scope of this article, whether more traditional programming or OO/UML 
is used inside each office or process, is not discussed. It is the mapping of the full process 
data-flow architectural diagram onto offices that is discussed. 

Taking a 100% OO/UML architecture, with only the necessary minimum of processes, 
and investigate the office mapping factor would be interesting.  

7. Warnings 

7.1 High Cohesion Could Cause Too High Internal Complexity 

With high cohesion, there is of course a possibility that a person may sit so protected in the 
office that the system would organically grow more than wanted. Also, inside a process one 
has to watch out for the cuckoo entering the nest. It is hard to see every situation 
beforehand, but still it is also a good idea to analyse and design to some depth. Within a 
real-time process, any methodology that the programmer is comfortable with should be 
encouraged. This, of course, could include OO and UML.  

7.2 Low Coupling Could Also Cause Too High Internal Complexity 

We saw during our development phase that, if we modified the architecture, we were able 
to serve the internal process “applications” to a better extent. The first architecture is 
described in [1] and the second in [2]. However, not even [2] needs be the final 
architecture. With low coupling, we then have tools to insert new processes or new 
channels, or to remove some. This could be necessary if we discover that we do too much 
in a process. To split (and kick out the cuckoo) may be to rule – but it does not have to be. 
These considerations should be done any time an unforeseen complexity arises, if one has a 
feeling that it is an architectural issue. On the second architecture we introduced an 
asynchronism with the introduction of a two element (composite and synchronous) data 
buffer process. This led to more coupling (communication) and less cohesion (state) in the 
connected processes – but ultimately to lower complexity. 
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8. Testing 

Inside each office individual testing was done, in the more traditional way, on smaller 
functions, with debugger and printouts. 

However, interesting to see was that testing of the processes was almost always done 
in vivo, with all the other processes present – on each office’s build. The reason that this 
was possible was that with the parallel implementations, the protocols were incrementally 
made more and more advanced, on a need to have basis. It seemed like the tasks were well 
balanced, because there was not much waiting for each other. Programming and testing was 
– almost, synchronous. 

We kept track of each error and functional point. Before release of version 1.0 (yet to 
come) we have zero to a few known bugs to fix. It seems like it is easy to determine which 
office should do an error fix. There have been little errors in interprocess communication. It 
has been easy to determine where an error might be located. 

9. Other Teams 

We released incremental new beta versions for the other team to use, mostly on set dates. 
The date was the steering parameter, not a certain amount of functionality. We felt it was 
easier to keep the enthusiasm this way, and that it helped the office mapping factor. This 
has briefly been described in Norwegian in [6].  

10. Conclusion 

It seems that a successful mapping from a process data-flow architecture to offices is 
possible. Simultaneous programming with high cohesion (in process and office) and low 
coupling (between processes and offices) is defined as high “Office Mapping Factor”, a 
term coined here. It seems like the product we have developed, described here and in two 
other publications ([1-2]), has benefited from the architecture chosen. We have not studied 
whether other methodologies would be better or worse off, since this paper is an industrial 
case observation. 
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