
Communicating Process Architectures 2001 305
Alan Chalmers, Majid Mirmehdi and Henk Muller (Eds.)
IOS Press, 2001

CHANnels to deliver memory?
MOBILE structures and ALTing over memory?

Øyvind TEIG
Kongsberg Maritime Ship Systems, Ship Control (KMSS-SC)

7005 Trondheim, Norway
oyvind.teig@kmss.no

Abstract. Memory objects are assigned to processes over a CHANnel like construct.
This way one can wait for an object indefinitely, or with timeout in an ALT
construct - coexisting with CHANnel inputs. The run-time SYSTEM will handle
requests. Alternatively, a user memory handler process may use the underlying
SYSTEM and serve other clients. Occam 2 is used as catalyst language.

1 - Introduction

This note was directly inspired by Barnes and Welch, "Mobile Data Types for Communi-
cating Processes" [1], where the concept of copy by ownership moving between concurrent
processes is bound into the occam 2 language.

The paper introduces "the basic idea to make dynamic memory allocation not break
scheduling independence for parallel (occam-like) systems" (to quote one of the referees).
It introduces a way to handle memory allocation failures in these systems. In f.ex. limited
memory embedded devices, the idea suggested opens a possibility to dynamically allocate
memory, not by a go/no-go malloc, but by treating memory allocation as a blocking
synchronisation primitive, which may coexist with channel inputs in ALT statements. The
memory "delivered" by the run-time system may be of any type, specified by a system
module.

This note tries to "think aloud". It is not part of any ongoing research, contains
ideas only, collected by a software engineer working in industry.

Because this paper consists of ideas only, as input from industry to academia or toolmakers,
it has not been a goal to suggest usable examples. Also, how the underlying run-time
system would function is not discussed. This also goes for the liveliness properties of the
run-time system, as well as liveliness properties of occam programs using the concept. So,
whether f.ex. processes can deadlock blocking for memory, is not handled. The individual
elements in the list below have on purpose been presented in a rather terse form. The good
thing is that page count is low!

2 - Notes

Let us just jump on the ideas by playing with imaginative occam examples (this is not
occam 2):

306 Ø.Teig / CHANnels to deliver memory?

a) MEM MyIntrinsicMem
 CASE
 STACK
 HEAP
 PLACED; address; accessRights
 ROM; address
 FLASH; address; accessRights
 VIRTUAL
 EXCEPTION; type -- exceptionally handled
:

Just like CHAN OF aPROTOCOL, we introduce a similar SYSTEM OF aMEM.
Above, MyIntrinsicMem is a name defined by the user. In the example MEM, STACK,
HEAP etc. are new keywords which are understood by a configurer and run-time system.
Maybe their properties, like address and size could be defined above, or maybe a
separate configuration language is needed. This probably depends on how often a MEM
is used in the program, one time or scattered throughout.

b) SYSTEM OF MyIntrinsicMem aMEM:

MOBILE THINGa buffera: -- A data type with SIZE=512
MOBILE THINGb bufferb: -- A data type with SIZE=64

THINGc bufferc: -- Static

The SYSTEM keyword is inspired from Modula-2, where features of the "system" were
defined within the SYSTEM module, like the size of an integer and how coroutines
should be started and synchronized. In Modula-2, this module was built into the
compiler "because some of the objects it defines cannot be expressed in the Modula-2
language" [2]. The MOBILE keyword is taken from [1] and informs us that the data may
be dynamically allocated in some way, and ownership of data defined may be passed
around.

c) aMEM[HEAP] ? buffera -- blocks for object from HEAP
aMEM[HEAP,STACK] ? buffera -- blocks for object from HEAP or STACK
aMEM[PLACED(#1000,RW)] ? dualPortMem -- blocks for object from dual-port memory
aMEM[] ? buffera -- blocks for object from any segment(?)

The examples above show how different kinds of memory may be assigned for
memory objects. In effect, we have a parameterised new operator.

d) aMEM[HEAP] ? bufferc -- blocks for static usage(?)

It may be a good idea also to let static data come into presence by this mechanism, an
example is shown above. (This may pre-empt the sub-title of this note..) The compiler
would be able to see how an object is supposed to come into being.

e) aMEM[HEAP] ? buffera AFTER time -- ILLEGAL

Above, it would give up after time if memory did not become available. This is an
exception from CHANnel syntax - it cannot not be legal, since we do not have a
mechanism to handle timeout failure.

 Ø.Teig / CHANnels to deliver memory? 307

f) ALT
 (NOT needsBuffer) & aCHAN ? someData
 ... Process, set needsBuffer
 (needsBuffer) & aMEM[HEAP] ? buffera
 SEQ
 ... Use buffera
 ... Send off if appropriate
 (needsBuffer) & clock ? AFTER timeout
 ... Handle timeout

However, we can always time out in an ALT. This server receives someData on
aCHAN, processes it, but needs buffera in order to do some more interesting things.
When, or if, buffera has been received, it processes it and sends it on to another
process, in which case a new reclaim later on will be recognised by the runtime SYSTEM
as a proper request. If it decides not to send off, the runtime SYSTEM will, on next
reclaim, see that it already has a buffer, and pass on the privileges it already has.

g) ALT
 aMEM[] ? CASE
 STACK; buffera
 ...
 HEAP; buffera
 ...

Above, we just want space for buffera, and we do not care from where. If neither
STACK nor HEAP is available, we have a STOP situation.

h) ALT
 aMEM[PLACED(#2000,RW)] ? CASE
 PLACED; dualPortMem
 ... Do this
 EXCEPTION; type
 .. Handle it

Above, we want to serve a dual port memory which resides on a plug-in card. If the
card is not present, we receive an EXCEPTION instead. If we decided that we wanted to
be signalled whenever a card was inserted, we could just drop the EXCEPTION handling,
and the runtime SYSTEM would signal us in due course.

i) ALT
 [2]ab IS [buffera,bufferb]: -- or RETYPES?
 PRI ALT i = 0 FOR SIZE ab
 aMEM[HEAP] ? ab[i]
 SEQ
 ... Now we have the largest buffer available of the two
 ... Inform client which buffer size I have

The server above gets the largest of the two buffers, since buffera, which is largest and
has been assigned highest ALT priority, is indexed as [0].

j) PROC MEMHandler ([]SYSTEM OF MyIntrinsicMem aMEMS)
 WHILE TRUE
 ALT i=0 FOR SIZE aMEMS
 aMEMS[i][] ? CASE
 .. Process request and send out access right
:

Above, we have inserted a local MEMHandler between our processes and SYSTEM.
MEMHandler itself is able to communicate with SYSTEM directly. It would perhaps be

308 Ø.Teig / CHANnels to deliver memory?

most natural to let MEMHandler reply over the same SYSTEM "channel" on which the
request arrived. By studying the examples above, we understand this has to be so. Our
servers request some type of memory (out) and receive some kind of response (in)
without specifically using uni-directional mechanisms. An implicit bi-directional
scheme is instead suggested.

k) How this dynamic scheme "plugs into" the occam OO-like suggestion described in [3] ,
and into the fuller MOBILE concept of [1] remains to be seen. All three concepts
should break no occam (or extended occam) laws. (Late addition: [3] and an ancestor of
[1] are actually present in this very proceeding.)

Acknowledgements

I must thank Peter Welch for sending me a draft version of [1] half a year ago, and quietly
listening on some of the thoughts above at that stage. When I recently asked him how it
went with [1], he sent it to me just prior to the PDPTA conference. This gave me time to
write this note for the CPA 2001 deadline.

References

[1] F.R.M. Barnes and P.H.Welch, "Mobile Data Types for Communicating Processes", CSREA Press, June
2001. The 2001 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'2001)

[2] Logitech M2, Modula-2 Language Reference, Multiscope Inc, Dec.1991, page 273
[3] Øyvind Teig, "From safe concurrent processes to process-classes? PLUSSING new code by ROLLING

out and compile?", submitted to CPA 2001.

Øyvind Teig is Senior Development Engineer at Kongsberg Maritime Ship Systems, Ship
Control. He has worked with embedded systems for 25 years, and is especially interested in
real-time language issues. See http://home.no.net/oyvteig/ for publications.

