
Atomic operations and the transputer
© Roger Shepherd, 2014

Atomic operations are relevant in systems where there is state that can be observed 
and/or modified by more than one agent. Commonly atomic operations concern the 
state of a memory system, although the atomicity of operations on other state could 
also be an issue.

Transputer memory system
The transputer memory system was much simpler than many modern memory 
systems. The only caching was the 2-word instruction prefetch buffer. There was no 
mechanism in the transputer to ensure coherency between the prefetch buffer and 
the memory and it is possible to construct programs which show the breakdown in 
coherency and consistency. However, apart from this, the memory system was 
coherent and had strict consistancy for all observers. 

The memory accesses were atomic at the word and sub-word levels. All the bits in a 
word could be written to at the same time, and all the bytes could be individually 
written to. This atomicity was not true for larger accesses; for example, the action of 
the processor writing multiple words to memory (e.g. writing four words to save the 
stack when performing a call instruction) was performed as four separate writes to 
memory which could be interleaved with memory accesses from the links. If regions 
of memory were shared between agents (processor and links) it would be possible to 
observe this non-atomicity. For the most part, by convention, the agents in the 
transputer did not share memory regions which might be read and written 
concurrently. The occam rules ensured that this was true for data manipulated by the 
processor and links; a link channel would be operating as a result of an input or 
output operation performed by a process and hence the memory accessed by that 
process would be accessed in accordance with the occam rules. One perhaps subtle 
point is that occam permits memory to be disjoint at the byte level; that is, a single 
word could contain bytes “belonging” to different processes. It was therefore 
necessary that the memory system supported the writing of individual bytes in a 
word; there would be an atomicity issue to be addressed if part-word writes had to be 
implemented as a read-modify-write sequence. 

So, in summary, as far as program data access were concerned, the occam sharing 
rules and the sub-word atomicity of the memory system ensured there were no 
atomicity issues. The transputer scheduler also ensured that all memory accesses 
associated with processes running in parallel had completed before a subsequent 
process started to execute. For example, in 

SEQ
     PAR
          P
          Q
     R



all memory accesses for P and Q will have completed before any memory accesses 
of R start.

There is genuine sharing of the memory system between the processor and the 
data-transfer engines of the links, however the occam disjoint rules and the 
memory’s atomicity properties ensure that that these operate without any 
interference. 

Atomicity and the scheduler
The remaining atomicity concerns in the transputer relate to the operation of the 
scheduler and, in particular, to the data structures used by the scheduler. The data 
structures comprise:- the process control blocks (the first few locations below a 
process workspace), the scheduler queues, the timer queues, the channels, and the 
interrupted process save area.

The atomicity of access to these structures is ensured because there is only one 
entity which performs scheduling operations - the processor. The processor executes 
instructions (or part instructions in the case of interruptable instructions) and 
scheduling operations on behalf of the links. 

[]


