
Using FDR2 and ProBE tools when state-ing is not enough

Øyvind Teig, Autronica Fire and Security
http://www.teigfam.net/oyvind/home/
Lecture material at:
http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/

Becoming textual: attempting to model ‘XCHAN’ with CSPm

1

http://www.teigfam.net/oyvind/home/
http://www.teigfam.net/oyvind/home/
http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/
http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/

Exam lecture for

TTK3 - Sanntidsteori, Real-time theory (1)

in the spirit of

TK8112 - The Theory of Concurrency in Real-Time Systems (2)

Trondheim, 15. April 2013 (Electrical Engineering D240 12:15-14:00) ->
(Rev2, after exam same date: typos fixed and new layout on References page)
(Rev3, August 2013: the two pages of «Modeling XCHAN" have been updated)

2

Introduction

1. Introduction
2. Theory: XCHAN
3. Hands on: deadlock
4. Determinism-analysis of the XCHAN model
5. Conclusion

3

Meeting the requirements

• What is a requirement and what is an implementation?

• How do we know that an implementation fulfills a requirement?

4

CSPm (also called CSPM)

• CSPm (3),(4) is a scripting language that combines CSP process algebra with an expression language to
support the idioms of CSP

• The three operators ? ! . bind names to values in the functional language part of CSPm. There are no
explicit assignments, but there are «Datatype» definitions

• ? ! are syntactic sugar. «There is no sending, no receiving - just synchronizing on an event and optional
exchange of data.
c?x -> P(x) is syntactic sugar for "will synchronise on any event
c.a ∈ {|c|}, binding the name x to each a in the subsequent process definition"» (in letter from P. A., UofOx)

• Algorithms may be modeled in CSP, not «executed», only shown that they may be executed (the
terms«executable» as used in Promela is not used)

• Not everything in the book (12) (Roscoe) is implemented in CSPm - f.ex. «synchronous parallel». Same
terms may even have different names. See my blog note (5) for a discussion

5

FDR2

• Compiles CSPm scripts. Is Formal System’s «heavy» tool

• I installed it on OSX (Mac OS X) binaries. Again, see my blog note (5)

• Uses X11 (XQuartz on OSX)

• Presently beta testing a new version at University of Oxford (source: UofOx)

6

ProBE

• Also compiles CSPm scripts

• Is «an animator for CSP processes allowing the user to explore the behaviour of models
interactively»

• I discovered that the download link was dead, and when Oxford had been made aware of
this the binaries were restored on 1March2013

• I downloaded the vintage Win95 version, as there was no OSX version. Runs under
WineApp.app on OSX, as does the folding editor WinF. Again, see the blog note (5).

• Proved to be as promising as I had hoped for during my 1-2 moths of FDR-only despair.
Opened up for a lot of aha-experiences

7

Self study

1. After this lecture, you should be able to

2. Install and run FDR2 and ProBE

3. Do self study of mbuff.csp which is covered as a tutorial in the FDR2 User Manual
(6). See «1.4 Specification Example», «1.4.1 Multiplexed buffer example» and «3.2.2
Getting started». I started with this, but will not go throught it here

4. Continue with other files in the ‘demo’ directory. I assume they have been carefully
selected to take the student through most of the secret paths. Many of these have
also been described in the lecture book (12) (Roscoe)

8

Theory: XCHAN

1. Introduction
2. Theory: XCHAN
3. Hands on: deadlock
4. Determinism-analysis of the XCHAN model
5. Conclusion

9

XCHAN [1]

XCHANs: Notes on a New Channel Type, in Communicating Process Architectures 2012. See (8)

x-channel + CHAN

x-channel

CHAN

10

Why XCHAN here?

• XCHAN by itself is not relevant to this lecture

• However, going from an English word description
(specification) and trying to model it in CSPm and verifying
the model with FDR2 and ProBE is relevant to this lecture

• XCHAN was «my case» that easily motivated me

• After having learned from my struggling here, try to find your own case

11

Why XCHAN here?

• XCHAN by itself is not relevant to this lecture

• However, going from an English word description
(specification) and trying to model it in CSPm and verifying
the model with FDR2 and ProBE is relevant to this lecture

• XCHAN was «my case» that easily motivated me

• After having learned from my struggling here, try to find your own case

• ..or try to model XCHAN simpler and better (then mail me)

12

http://www.teigfam.net/oyvind/me/me.html
http://www.teigfam.net/oyvind/me/me.html

XCHAN [2]

XCHAN

XCHAN

Not modeled here

Modeled here

13

XCHAN [2]

XCHAN

XCHAN

Not modeled here

Modeled here
For handling of asynchronous and

synchronous methodologies

14

Modeling XCHAN

Prof. Peter Welch made several models of buffered and unbuffered XCHAN in occam-pi during proof-
reading of the original XCHAN paper (*). I have photos of the listings he showed me at CPA-2012 (**), but
here is a summary:

1. An occam process model of a buffered XCHAN, including a modified standard ring buffer (xchan.occ)

2. An occam process model of an unbuffered XCHAN. Two versions:

a. Uses non-implemented !!, !! extended output and input ??, ?? (tho phase write)

b. Uses two explicit readings on XCHAN end (first to exit ALT, second to pick data)

(**) The model was presented at the fringe at CPA-2103 (the year after)
An occam Model of XCHANs
Peter H. WELCH (a) and Øyvind TEIG (b)
(a) School of Computing, University of Kent, UK
(b) Autronica Fire and Security AS, Trondheim, Norway
See http://wotug.org/cpa2013/programme.shtml#paper63

(*) In my paper I had done reasoning to show
that XCHAN is implementable

15

http://wotug.org/cpa2013/programme.shtml#paper63
http://wotug.org/cpa2013/programme.shtml#paper63

ASIDE: xchan-ready-first or xchan-ready-classic

(*) At CPA-2013 I published a paper about «feathering», which in fact needs «classic» XCHAN semantics:
Selective choice ‘feathering’ with XCHANs
Communicating Process Architectures 2013 (CPA-2013)
See http://www.teigfam.net/oyvind/pub/pub_details.html#FEATHERING

• All of Peter Welch’s senders get xchan-ready (true) when the connection with the receiver
was committed. After xchan-ready (true) the sender must send, and this is the only place to
send. This algorithm also fully implements the original XCHAN semantics. We could call this
the «preconfirmed» solution

• The original XCHAN paper may start sending any time, but if sending fails then the xchan-
ready is signalled when the connection with the receiver is fully committed. So, this
«classic» solution only uses xchan-ready to send after an initial failure (*)

16

http://www.teigfam.net/oyvind/pub/pub_details.html%23FEATHERING
http://www.teigfam.net/oyvind/pub/pub_details.html%23FEATHERING

Repeated CSPm back to square one

• I tried to model XCHAN in CSPm as best as I could but for a long time I failed to understand
the landscape:

• ..because I tried to look for Lego bricks that don’t exist

• I continuously had to go back to square one

• Being new to this I even tried to write a «test program» instead of a specification

• A test program that sends data and analyses the output to see if they are correct is not a
specification!

• A specification describes what the implemenation must do in a more general way
It is not a test program!

17

Repeated CSPm back to square one

• I tried to model XCHAN in CSPm as best as I could but for a long time I failed to understand
the landscape:

• ..because I tried to look for Lego bricks that don’t exist

• I continuously had to go back to square one

• Being new to this I even tried to write a «test program» instead of a specification

• A test program that sends data and analyses the output to see if they are correct is not a
specification!

• A specification describes what the implemenation must do in a more general way
It is not a test program!But can’t I specify what I need?

18

Repeated CSPm back to square one

• I tried to model XCHAN in CSPm as best as I could but for a long time I failed to understand
the landscape:

• ..because I tried to look for Lego bricks that don’t exist

• I continuously had to go back to square one

• Being new to this I even tried to write a «test program» instead of a specification

• A test program that sends data and analyses the output to see if they are correct is not a
specification!

• A specification describes what the implemenation must do in a more general way
It is not a test program!

But maybe a specification could

be of a system under test?

Like specifying a test program

and the system under test?

19

Problems(?)

1. Writing a specification that as a consequence of a fast producer and slow consumer will sooner or
later lose data

• CSPm has no concept of time, nor any delay. I cannot say something like «during a burst
chan_left must accept one input every tick, but chan_right only accepts one output on every 5th
tick». If so, a buffer of 5 would store for 5-6 ticks without overflow. I don’t know which buttons to
press in CSPm to specify anything like this. And, is there another way to say the same?

• Still I have not resolved what delayed choice and untimed timeout can do for me. They are really
undocumented

• Timed CSP (9) or PAT (11) could perhaps be used for needs like this?

2. Writing a specification that would normally pipe all data through, but may alternatively lose all data

• CSPm has no prioritised choice that would make it possible for me to check chan_ready «first», if
there was nothing there, then chan_left would be included in the choice

3.But will my final result here show that for an XCHAN system I won’t need any of the above?

20

Solutions(?)

I dreamt up more and more difficult solutions. Like

• trying to simulate prioritised choice (by feedback?)

• I though I had simulated this in one end of the model, but then, on the other end I failed

• It became unmanagable for me. That’s when square one was good to have

21

Repeated CSPm but not back to 1?

• Realising what CSPm offers and does not offer is in the learning

• Only recently in this process ProBE appeared, and it made me see and then understand
more

• Learing to reason about a subpart of the system and see that it is enough that this part is
asserted true in a verification, is enough!

• Starting to discover the Lego bricks and their roles: refinement, failures, failure-divergence,
traces, deadlock, livelock and determinism. Hiding (and renaming)

• Starting to see the basics of CSPm slowly takes me by the hand and leads me to a next
level

22

chan_right

xchan_ready

chan_left xchan

chan_next

chan_disturb
Scheduler

P_SERVER P_CONSUMER

Figure 1

The model(s) architecture

23

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

24

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2
25

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

SYNCHRONISES THE SENDER AND RECEIVER END OF AN XCHANNEL BY EXPOSING THE INNER STATE CHANGES TO THE PARTIES

26

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

expected value

actual value

SYNCHRONISES THE SENDER AND RECEIVER END OF AN XCHANNEL BY EXPOSING THE INNER STATE CHANGES TO THE PARTIES

27

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

ALWAYS INPUTS
MESSAGES AND TRIES
TO OUTPUT THEM ON
THE XCHANNEL AND

HANDLES OVERFLOW AT
P_SERVER APPLICATION

LEVEL

28

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

ALWAYS INPUTS
MESSAGES AND TRIES
TO OUTPUT THEM ON
THE XCHANNEL AND

HANDLES OVERFLOW AT
P_SERVER APPLICATION

LEVEL

29

xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_left chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

Figure 2

TAKES INPUT ON
THE XCHANNEL

WHEN IT IS
ALLOWED BY

HANDSHAKE TO
GET RID OF IT

30

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

chan_next

P_SERVER P_CONSUMERP_XCHAN

chan_next

chan_rightchan_left

chan_disturb

chan_left P_SPECIFICATION_BUFF P_SPECIFICATION

THE_SPECIFICATION

THE_IMPLEMENTATION

Figure 3

EXERCISES THE XCHANNEL AND ALSO CONTAINS THE P_XCHAN HANDLING PROCESS

31

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

Figure 4

IS A COMPOSITE PROCESS OF THE_IMPLEMENTATION AND P_TESTER

32

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

Figure 4

SENDS AND RECEIVES MESSAGES TO/FROM
THE_IMPLEMENTATION AND HIDES MUCH DETAIL
TO SIMPLIFY THE_SPECIFICATION_OUTER

33

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

Figure 4

P_TESTER is also called P_TESTER_1

SENDS AND RECEIVES MESSAGES TO/FROM
THE_IMPLEMENTATION AND HIDES MUCH DETAIL
TO SIMPLIFY THE_SPECIFICATION_OUTER

34

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

THE_SPECIFICATION_OUTER

chan_main_in chan_main_out

Figure 5

IS A COMPOSITE PROCESS OF
THE_IMPLEMENTATION AND P_TESTER

35

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

THE_SPECIFICATION_OUTER

chan_main_in chan_main_out

Figure 5

SPECIFIES THE_IMPLEMENTATION_OUTER THAT
FOR EVERY INPUT MAY SEND OUT A TAGGED
OUTPUT MESSAGE

36

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

THE_SPECIFICATION_OUTER

chan_main_in chan_main_out

Figure 5

What value (if any!) does such a general specification have?

SPECIFIES THE_IMPLEMENTATION_OUTER THAT
FOR EVERY INPUT MAY SEND OUT A TAGGED
OUTPUT MESSAGE

37

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

THE_SPECIFICATION_OUTER

chan_main_in chan_main_out

Figure 5

«Different from LTL assertions, an assertion for refinement
compares the whole behaviors of a given process with another
process, e.g., whether there is a subset relationship» (11)

SPECIFIES THE_IMPLEMENTATION_OUTER THAT
FOR EVERY INPUT MAY SEND OUT A TAGGED
OUTPUT MESSAGE

38

Hands on: deadlock

1. Introduction
2. Theory: XCHAN
3. Hands on: deadlock
4. Determinism-analysis of the XCHAN model
5. Conclusion

39

Refusals and acceptances

Refusals
What events a state may not engage in

Acceptances
What events a state must engage in,
if its environment desires

The one is the complement of the other «in ∑»

(6) p38
40

Deadlock: FDR2

occam deadlocked
here because ! has
semantic meaning, in
FDR2 it’s only
syntactic sugar for
any.same_data
without direction!

41

Deadlock: ProBE

P_A = (any.same_data -> any.same_data -> P_A)

P_B = (any.same_data -> any.deadlock_data -> P_B)

42

Deadlock and hiding

Hiding can introduce divergence, and therefore
invalidate many failures/divergences model
specifications

In the stable failures model, a system P can
deadlock if and only if P\ ∑ can. In other words,
we can hide absolutely all events — and move
this hiding as far into the process as possible
using the principles already discussed

(6) p35-36
43

Determinism-analysis of the XCHAN model

1. Introduction
2. Theory: XCHAN
3. Hands on: deadlock
4. Determinism-analysis of the XCHAN model
5. Conclusion

44

Simply because

• I struggled more with this than with anything else

45

Pick one and satisfy, but find the right one(s)?

Property Model CSPm assert # here

«Simple»

«Complex»

Safety

STOP’ed train = fine!

Traces (refinement)
Do not know what will happen!
STOP refines all!

[T 4, 10

Liveness
Deadlock-freedom
Determinism

Failures (refinement)
Constrains what it is permitted to
block and perform

[F 5, 11

Livelock-freedom
Liveness properties
Safety also here
Deadlock also here
Determinism also here

Failures-divergence (refinement)
After divergence trace, then livelock
(CHAOS). Detect livelock and used
actively to make events not visible,
hidden

[FD
:[livelock free]

:[deadlock free]
:[deterministic]

6, 12
2, 8

1, 7
3, 9

4.3 Choice of Model
The hierarchy of models for CSP are useful because they provide differing amount of
information about the processes, with a corresponding change in the cost of working in
that model. It is more efficient to perform a check in the simplest model which
provides the required detail. (FDR2 (6) manual page 33)

FDR2 «allows the automatic checking of deadlock and livelock freedom as well as general
safety and liveness properties» (10)

46

In words
Safety [T

• «There should never be a train and a car on the cross point at the same time» (10)

• XCHAN

✓ «A message shall never be lost in XCHAN if there is an available receiver, on a message-per-
message basis»

✓ «Over time a fast producer and slow consumer may cause messages to become lost. The XCHAN
sending side (application layer like P_SERVER) is in full control to take whatever action it wants to
ensure that the required safety level is upheld.»

Liveness [F

• «Whenever a car or a train approaches the crossing they should eventually be able to cross» (10)

• XCHAN

✓ «If buffer capacity is reached and no more data arrives all data will eventually be available for a
receiver»

47

The CSPm requirement and
model should then reflect this

• We can’t just write anything and then press any
button to verify that a requested property holds,
like for any other sw program

• However, FDR2 (or I) will pick from its chest of
tools whenever I have written some CSPm and I
press the button

• I will then have the «determinism property» of the
(good or bad) model I have written verified

• Remember that STOP satisfies any safety
specification (like a trian that stands still) and that
STOP is the simplest deadlocked process

• Therefore we use several properties to tick off as
verified the required properties. This sum of the
results proves the final system

assert #1

assert #12

assert #6

_O
U

TE
R

48

assert THE_IMPLEMENTATION :[deadlock free] -- #01 ok : deadlock property [FD]
assert THE_IMPLEMENTATION :[livelock free] -- #02 ok : livelock property
assert THE_IMPLEMENTATION :[deterministic] -- #03 err: deterministic [F]
assert THE_SPECIFICATION [T= THE_IMPLEMENTATION -- #04 err: safety property (FDR2 man p33..:)
assert THE_SPECIFICATION [F= THE_IMPLEMENTATION -- #05 err: liveness or deadlock-freedom properties
assert THE_SPECIFICATION [FD= THE_IMPLEMENTATION -- #06 err: livelock-freedom property

assert THE_IMPLEMENTATION_OUTER :[deadlock free] -- #07 ok : deadlock property [FD]
assert THE_IMPLEMENTATION_OUTER :[livelock free] -- #08 ok : livelock property
assert THE_IMPLEMENTATION_OUTER :[deterministic] -- #09 err: deterministic [F]
assert THE_SPECIFICATION_OUTER [T= THE_IMPLEMENTATION_OUTER -- #10 ok : safety property (FDR2 man p33..:)
assert THE_SPECIFICATION_OUTER [F= THE_IMPLEMENTATION_OUTER -- #11 ok : liveness or deadlock-freedom properties
assert THE_SPECIFICATION_OUTER [FD= THE_IMPLEMENTATION_OUTER -- #12 ok : livelock-freedom property

Understanding XTHE_IMPLEMENTATION_OUTER deterministic[F]

49

«In this case, it is a failure of liveness, which you can tell by the right-hand area having the heading Accepts. Such a behaviour consists of
a perfectly acceptable trace of events performed by THE_IMPLEMENTATION_OUTER and an unacceptably small set of events that
THE_IMPLEMENTATION_OUTER may then offer to its environment.» (FDR2 manual p27 rewritten for this system)

FDR2

50

Observe that the ProBE diagram above jumps right into THE_IMPLEMENTATION and then into P_SERVER, not
THE_IMPLEMENTATION_OUTER

ProBE

51

Level 2
THE_IMPLEMENTATION[|...|]chan_next_!next_out->(chan_left_!xmessage->(chan_right_?piped_through.xmessage->chan_main_out_!piped_through.xmessage-
>P_TESTER[]chan_right_?newest_after_overflow.xmessage->chan_main_out_!newest_after_overflow.xmessage->P_TESTER))[]chan_left_!xmessage-
>P_TESTER[]P_TESTER[]chan_disturb_!disturb->P_TESTER\...

Level 3
(P_SERVER[|...|](P_XCHAN[|...|]P_CONSUMER_3(none,1,null))\...)[|...|]chan_left_!xmessage->(chan_right_?piped_through.xmessage->chan_main_out_!
piped_through.xmessage->P_TESTER[]chan_right_?newest_after_overflow.xmessage->chan_main_out_!newest_after_overflow.xmessage->P_TESTER)\...

Level 4
(P_SERVER_5(one,false,false,piped_through,xmessage)[|...|](P_XCHAN[|...|]P_CONSUMER_3(none,1,null))\...)[|...|]chan_right_?piped_through.xmessage-
>chan_main_out_!piped_through.xmessage->P_TESTER[]chan_right_?newest_after_overflow.xmessage->chan_main_out_!newest_after_overflow.xmessage-
>P_TESTER\...

Level 5
(P_SERVER_5(one,true,false,piped_through,xmessage)[|...|](xchan_leg2_!commit_discard_xmessage.xmessage->xchan_ready_!ready_send_now->(xchan_leg1_?
piped_through.xmessage->xchan_leg2_!piped_through.xmessage->P_XCHAN[]xchan_leg1_?newest_after_overflow.xmessage->xchan_leg2_!
newest_after_overflow.xmessage->P_XCHAN)[|...|]P_CONSUMER_3(none,1,null))\...)[|...|]chan_right_?piped_through.xmessage->chan_main_out_!
piped_through.xmessage->P_TESTER[]chan_right_?newest_after_overflow.xmessage->chan_main_out_!newest_after_overflow.xmessage->P_TESTER\...

THIS IS level 5:

Level 6
(P_SERVER_5(one,true,false,piped_through,xmessage)[|...|](xchan_ready_!ready_send_now->(xchan_leg1_?piped_through.xmessage->xchan_leg2_!
piped_through.xmessage->P_XCHAN[]xchan_leg1_?newest_after_overflow.xmessage->xchan_leg2_!newest_after_overflow.xmessage->P_XCHAN)
[|...|]P_CONSUMER_3(none,2,xmessage))\...)[|...|]chan_right_?piped_through.xmessage->chan_main_out_!piped_through.xmessage->P_TESTER[]chan_right_?
newest_after_overflow.xmessage->chan_main_out_!newest_after_overflow.xmessage->P_TESTER\...

Level 7
(P_SERVER_5(one,false,true,piped_through,xmessage)[|...|](xchan_leg1_?piped_through.xmessage->xchan_leg2_!piped_through.xmessage-
>P_XCHAN[]xchan_leg1_?newest_after_overflow.xmessage->xchan_leg2_!newest_after_overflow.xmessage->P_XCHAN[|...|]P_CONSUMER_3(none,2,xmessage))\...)
[|...|]chan_right_?piped_through.xmessage->chan_main_out_!piped_through.xmessage->P_TESTER[]chan_right_?newest_after_overflow.xmessage-
>chan_main_out_!newest_after_overflow.xmessage->P_TESTER\...

ProBE

52

So, this is not the trace, is it..? But we discuss no-determinisn here..? Hmm.

ProBE

53

experiment-1:
removing three hidings will make it deterministic, but fail others!
Search for «experiment-1» in the «2013-03-20-001.csp» file.
It makes both property sets (above and below red line) equal

THE_IMPLEMENTATION = (
 ...
-- \ {| xchan_ready_, xchan_leg1_, xchan_leg2_ |}
-- experiment-1: to get it deterministic: remove hiding here (1/3)

THE_SPECIFICATION = (
 P_SPECIFICATION_BUFF
 [| {|chan_mid_|} |]
 P_SPECIFICATION)
-- \ {| chan_mid_ |}
-- experiment-1: to get it deterministic: remove hiding here (2/3)

THE_IMPLEMENTATION_OUTER = (
 ...
-- \ {| chan_left_, chan_right_, chan_next_, chan_disturb_ |}
-- experiment-1: to get it deterministic: remove hiding here (3/3)

Hiding makes things less obvious and opens for surprises - so
determinism may fail because of this!

Experimenting with hiding

Generalized parallel /
interface parallel / sharing

54

FDR2 batch -trace -depth 5 -refusals /Users/teig/Documents/_Dokumenter/Autronica/NTNU-fag/XCHAN/2013-03-20-001.csp

If -trace has been selected, then report
traces for sub-processes as well as the root
processes. This is the same as expanding
the specified number of levels of the tree in
the FDR debugger, noting down the traces
for each sub-process. The BEGIN TRACE/
END TRACE lines carry additional
information indicating the path through from
the root to the sub-process which generate
the particular trace (6)

A typical use of -depth is when the CSP
script uses hiding and compression and
extracting the full counter-example requires
‘tunneling’ inside those sub-processes. This
is often the case when the CSP has been
automatically generated from some other
notation.

FDR2 produces 6 «trails» for me. I have
named them Trail:1 to Trail: 6. 5-6 not listed
here (space).

FDR2 in batch mode. Trail 1
(BEGIN batch -depth 5)

Checking THE_IMPLEMENTATION_OUTER :[deterministic]
Starting timer
Starting compilation

Starting...
Compiling...
Reading...
 Loading... done
Took 0(0+0) seconds
Starting timer
About to start determinism check
Allocated a total of 2 pages of size 128K
Compaction produced 0 chunks of 16K.
Refinement check:
Trace error after 2 states
Refine checked 2 states
With 1 transitions

Found 1 example
Took 0(0+0) seconds
Refinement check:
Refusal error after 16 states
Refine checked 16 states
With 16 transitions
Allocated a total of 8 pages of size 128K
Compaction produced 0 chunks of 16K.
xfalse
BEGIN BEHAVIOUR example=0 process=0 path=0

BEGIN TRACE (Trail:1)
chan_main_in_.xmessage
_tau
_tau
_tau
_tau
_tau
_tau
_tau
_tau
END TRACE
BEGIN ACCEPTANCES
chan_main_out_.piped_through
END ACCEPTANCES
BEGIN REFUSALS
chan_main_in_
chan_main_out_.newest_after_overflow
END REFUSALS
END BEHAVIOUR example=0 process=0 path=0

BEGIN BEHAVIOUR example=0 process=0 path=0 0

55

BEGIN TRACE (Trail: 2)
chan_main_in_.xmessage
chan_next_.next_out
chan_left_.xmessage
_tau
_tau
_tau
_tau
_tau
chan_right_.piped_through.xmessage
END TRACE
BEGIN ACCEPTANCES
chan_main_out_.piped_through
END ACCEPTANCES
BEGIN REFUSALS
chan_disturb_
chan_left_
chan_main_in_
chan_main_out_.newest_after_overflow
chan_next_
chan_right_.newest_after_overflow
chan_right_.piped_through
END REFUSALS
END BEHAVIOUR example=0 process=0 path=0 0

BEGIN BEHAVIOUR example=0 process=0 path=0 0 0

BEGIN TRACE (Trail: 3)
chan_next_.next_out
chan_left_.xmessage
_tau
_tau
_tau
_tau
_tau
chan_right_.piped_through.xmessage
END TRACE
BEGIN ACCEPTANCES
chan_disturb_
chan_left_
chan_next_
END ACCEPTANCES
BEGIN REFUSALS
chan_right_.newest_after_overflow
chan_right_.piped_through
END REFUSALS
END BEHAVIOUR example=0 process=0 path=0 0 0

BEGIN BEHAVIOUR example=0 process=0 path=0 0 0 0

BEGIN TRACE (Trail: 4)
chan_next_.next_out
chan_left_.xmessage
xchan_ready_.ready_sender_has_xmessage
xchan_leg2_.commit_discard_xmessage.xmessage
xchan_ready_.ready_send_now
xchan_leg1_.piped_through.xmessage
xchan_leg2_.piped_through.xmessage
chan_right_.piped_through.xmessage
END TRACE
BEGIN ACCEPTANCES
chan_disturb_
chan_left_
chan_next_
END ACCEPTANCES
BEGIN REFUSALS
chan_right_.newest_after_overflow
chan_right_.piped_through
xchan_leg1_.newest_after_overflow
xchan_leg1_.piped_through
xchan_leg2_
xchan_ready_
END REFUSALS
END BEHAVIOUR example=0 process=0 path=0 0 0 0

BEGIN BEHAVIOUR example=0 process=0 path=0 0 0 0 0

Trail 2-4 (5-6 not shown)

56

Trail: 1 Trail: 2 Trail: 3 Trail: 4 Trail: 5 Trail: 6
chan_main_in_.
xmessage

chan_main_in_.xmessage

_tau chan_next_.next_out chan_next_.next_out chan_next_.next_out chan_next_.next_out
_tau chan_left_.xmessage chan_left_.xmessage chan_left_.xmessage chan_left_.xmessage
_tau _tau _tau xchan_ready_.ready_sender_has_xmessage xchan_ready_.ready_sender_has_xmessage
_tau _tau _tau xchan_leg2_.commit_discard_xmessage.xmessage xchan_ready_.ready_sender_has_xmessage xchan_leg2_.commit_discard_xmessage.xmessage
_tau _tau _tau xchan_ready_.ready_send_now xchan_ready_.ready_send_now xchan_ready_.ready_send_now
_tau _tau _tau xchan_leg1_.piped_through.xmessage xchan_leg1_.piped_through.xmessage xchan_leg1_.piped_through.xmessage
_tau _tau _tau xchan_leg2_.piped_through.xmessage xchan_leg2_.piped_through.xmessage
_tau chan_right_.piped_through.

xmessage
chan_right_.piped_through.xmessage chan_right_.piped_through.xmessage chan_right_.piped_through.xmessage

TRACE of THE_IMPLEMENTATION_OUTER :[deterministic]

ACCEPTANCES of THE_IMPLEMENTATION_OUTER :[deterministic]

Trail: 1 Trail: 2 Trail: 3 Trail: 4 Trail: 5 Trail: 6
chan_main_out_.piped_through chan_main_out_.piped_through

chan_disturb_ chan_disturb_ chan_disturb_
chan_left_ chan_left_ chan_left_
chan_next_ chan_next_ chan_next_

xchan_ready_.ready_sender_has_xmessage

REFUSALS of THE_IMPLEMENTATION_OUTER :[deterministic] (There is only external [] choice in use, still we have refusals...?)

Trail: 1 Trail: 2 Trail: 3 Trail: 4 Trail: 5 Trail:Trail: 6
chan_disturb_
chan_left_

chan_main_in_ chan_main_in_
chan_main_out_.newest_after_overflow chan_main_out_.newest_after_overflow

chan_next_
chan_right_.newest_after_overflow chan_right_.newest_after_overflow chan_right_.newest_after_overflow chan_right_.newest_after_overflow
chan_right_.piped_through chan_right_.piped_through chan_right_.piped_through chan_right_.piped_through

xchan_leg1_.newest_after_overflow xchan_leg1_.newest_after_overflow xchan_leg1_.newest_after_overflow
xchan_leg1_.piped_through xchan_leg1_.piped_through xchan_leg1_.piped_through
xchan_leg2_ xchan_leg2_
xchan_ready_ xchan_ready_

xchan_ready_.ready_send_now

Traces, acceptances and refusals tables

57

Drawn by hand

Nothing wrong here!

58

chan_left xchan_leg1 xchan_leg2

chan_disturb

xchan_ready

chan_right

P_SERVER P_CONSUMERP_XCHAN

P_TESTER

THE_IMPLEMENTATION_OUTER

chan_next

chan_main_in chan_main_out

Figure 4

At this point this yields the same result as with see of the original P_TESTER

SENDS AND RECEIVES MESSAGES
TO/FROM THE_IMPLEMENTATION
AND TRIES TO SORT OUT
OVERFLOW OR NOT

59

Diff’ing logs may be a good idea

60

But traces only differ on _tau and disturb_:

61

• I tried to remove chan_disturb_, but got the exact same result. Then also the _tau were gone, because
chan_disturb_ was hidden in THE_IMPLEMENTATION_OUTER

• Same results with both P_TESTER_1 and P_TESTER_2

• This should indicate that chan_disturb is correctly modeled, since it in fact does not «disturb» at all

62

Finally..
• Removing hiding in THE_IMPLEMENTATION_OUTER

made it deterministic!

• But only with the much more precise P_TESTER_2
which also relates to overflow

• QED?

SENDS AND RECEIVES MESSAGES
TO/FROM THE_IMPLEMENTATION
AND TRIES TO SORT OUT
OVERFLOW OR NOT

63

Conclusion of non-determinism evaluation

• After much effort I finally found a way to see that my implementation is
deterministic!

• From ProBE it also seems to do what I have told it to do

• Even if I know that nondeterminism «comes from» hiding I had to «tune» and go
all the way described in this section

• Observe that I have used
[] (external choice) in all implementations and
|~| (internal or nondeterministic choice) only in the specifications

•

64

CHAOS, WAIT
• Seem to be part of any process set in FDR2.

I don’t know why

• They do not show up in ProBE

• «CHAOS» is a CSPm keyword, it can always
choose to communicate or reject. It is «the
most deterministic divergence-free
process» (7)

• «WAIT» is not in CSPm. It simply is a delay
operator

• Neither is «RUN» (seen in CSP book (12)). It
is «the process that will deterministically
perform any event» (7)

65

Which tool and when?

• When ok fulfillment of a property:

• observe the assumed behaviour with ProBE

• remove some hiding to watch internal details

• When error:

• use FDR2 and ProBE together

• play around with hiding (and renaming?)

• run FDR2 in batch mode with «depth» parameter

66

Conclusion

1. Introduction
2. Theory: XCHAN
3. Hands on: deadlock
4. Determinism-analysis of the XCHAN model
5. Conclusion

67

Conclusions

1. CSPm (as CSP) has a steep learning curve. TK8112 covers the foundations of CSP, but
CSPm seemed to me to be a more different game than I had envisaged

2. How to succeed with FDR2 installation was not so obvious. FDR2 on OSX needed X11
(XQuartz). ProBE runs on WineApp.app on OSX. Wrote blog note, see (5)

3. After having become somewhat familiar with FDR2 and ProBE I encountered to
understand how (or if) I could specify and model XCHAN (8)

4. The present model took me quite far with an «occam in CSPm» approach. I feel
reasonably assured that I have specified and implemented models of the real XCHAN.
But this is in some respects the hardest bit: dragging onself from the marsh to solid
ground

5. Of course I have only scratched the surface of CSP and CSPm

6. It takes time to understand the CSPm landscape, even if CSPm is a language to
formally treat something as «simple» as state machines (or labeled transition diagrams)

68

For NTNU

1. I recommend the next curriculum to include exercises in CSPm. The FDR2 / CSPm User
Manual (6) is packed with a very interesting language! I have shown a flavour of it here.
Because I have (all minus a flavour) left to learn!

2. And also doing exercises in PAT, the Process Analysis Toolkit from the universities in
Singapore and Nanyang (10). Its CSP# language also contains LTL (Linear Temporal Logic)
and works with C# and Microsoft Contracts. Generates code (but not for this example,
since synchronous channels)

3. I also recommend more group work, because it’s hard to drag oneself by the hair

4. I must thank Sverre Hendseth, the lecturer, for his guidance and positive attitude

5. He certainly gave me the impression that there was not much prior work to draw on
concerning CSPm, FDR2 and ProBE at NTNU

69

References
Becoming textual: attempting to model ‘XCHAN’ with CSPm : Using FDR2 and ProBE tools when state-ing is not enough
Øyvind Teig, Autronica Fire and Security : http://www.teigfam.net/oyvind/home/
Lecture material at: http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/

(1) TTK3 - Sanntidsteori (NTNU), http://www.itk.ntnu.no/ansatte/Hendseth_Sverre/sanntidsteori/index.html
(2) TK8112 - The Theory of Concurrency in Real-Time Systems (NTNU), http://www.ntnu.edu/studies/courses/TK8112
(3) Formal Systems Europe, http://www.fsel.com
(4) University of Oxford, http://www.cs.ox.ac.uk/projects/concurrency-tools/ binaries for academic use
(5) «FDR2 notes», http://www.teigfam.net/oyvind/home/technology/057-fdr2-notes/ by Øyvind Teig.

It also contains some theory clarifications.
(6) FDR2 User Manual. Download from http://www.cs.ox.ac.uk/projects/concurrency-tools/
(7) «The Theory and Practice of Concurrency» by A. W. Roscoe. Used during NTNU lectures. Prentice Hall 1998.

See http://www.cs.ox.ac.uk/publications/books/concurrency/. PDF of the book exists on the Internet.
Also see http://www.cs.ox.ac.uk/publications/books/concurrency/

(8) XCHANs: Notes on a New Channel Type, by Øyvind Teig, in Communicating Process Architectures 2012 (CPA-2012), Proceedings of the 34th
WoTUG Technical Meeting (pages 155-170) P.H. Welch et al. (Eds.) Open Channel Publishing Ltd., 2012 ISBN 978-0-9565409-5-9 © 2012 The
authors and Open Channel Publishing Ltd and the authors.
Read paper and presentation at at http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN

(8) "Concurrent and Real-time Systems: the CSP Approach" by Steve Schneider, 1999. It also treats Timed CSP, not supported in FDR2
(9) «Model checking concurrent RSL with CSPm and FDR2», by Lizeth Tapia and Chris George, May 2008. The United Nations University, UNI-IIST

report No. 393
(10) PAT: Process Analysis Toolkit. An Enhanced Simulator, Model Checker and Refinement Checker for Concurrent and Real-time Systems. This also

takes CSP, but does not seem to be able to directly import CSPm. Made at Singapore University of Technology and Design; School of Computer
Engineering, Nanyang Technological University and School of Computing, National University of Singapore.
Download from http://www.patroot.com.

(11) «The Theory and Practice of Concurrency» by A. W. Roscoe. Used during NTNU lectures. Prentice Hall 1998.
See http://www.cs.ox.ac.uk/publications/books/concurrency/. PDF of the book exists on the Internet.
Also see http://www.cs.ox.ac.uk/publications/books/concurrency/

(12) «The Theory and Practice of Concurrency» by A. W. Roscoe. Used during NTNU lectures. Prentice Hall 1998.
See http:// www.cs.ox.ac.uk/publications/books/concurrency/. PDF of the book exists on the Internet.
Also see http://www.cs.ox.ac.uk/publications/ books/concurrency/

NTNU,15 April 2015

70

http://www.teigfam.net/oyvind/home/
http://www.teigfam.net/oyvind/home/
http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/
http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/
http://www.itk.ntnu.no/ansatte/Hendseth_Sverre/sanntidsteori/index.html
http://www.itk.ntnu.no/ansatte/Hendseth_Sverre/sanntidsteori/index.html
http://www.ntnu.edu/studies/courses/TK8112
http://www.ntnu.edu/studies/courses/TK8112
http://www.fsel.com
http://www.fsel.com
http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.teigfam.net/oyvind/home/technology/057-fdr2-notes/
http://www.teigfam.net/oyvind/home/technology/057-fdr2-notes/
http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.teigfam.net/oyvind/pub/pub_details.html%23XCHAN
http://www.teigfam.net/oyvind/pub/pub_details.html%23XCHAN
http://www.patroot.com
http://www.patroot.com
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/books/concurrency/
http://www.cs.ox.ac.uk/publications/
http://www.cs.ox.ac.uk/publications/

